959 resultados para Liver - Diseases


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease is now a major cause of liver disease in developed countries, largely as a result of an epidemic of obesity, diabetes and sedentary lifestyles. This has resulted in raised clinical awareness and diagnostic refinement. The entity encompasses several histologic patterns from benign steatosis to nonalcoholic steatohepatitis, the latter having a significant risk of progressive fibrosis and the development of cirrhosis. Labor-atory tests and imaging are not able to distinguish steatosis from steatohepatitis, which requires liver biopsy. However following an assessment of several risk factors, patients can be stratified for the potential risk of fibrosis, allowing the rational use of liver biopsy. This review will describe the various patterns of nonalcoholic fatty liver disease and relate this to disease pathogenesis and progression. Strategies for management, including experimental interventions, will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to define the determinants of the linear hepatic disposition kinetics of propranolol optical isomers using a perfused rat liver. Monensin was used to abolish the lysosomal proton gradient to allow an estimation of propranolol ion trapping by hepatic acidic vesicles. In vitro studies were used for independent estimates of microsomal binding and intrinsic clearance. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a physiologically based pharmacokinetic model. Modeling showed an approximate 34-fold decrease in ion trapping following monensin treatment. The observed model-derived ion trapping was similar to estimated theoretical values. No differences in ion-trapping values was found between R(+)- and S(-)- propranolol. Hepatic propranolol extraction was sensitive to changes in liver perfusate flow, permeability-surface area product, and intrinsic clearance. Ion trapping, microsomal and nonspecific binding, and distribution of unbound propranolol accounted for 47.4, 47.1, and 5.5% of the sequestration of propranolol in the liver, respectively. It is concluded that the physiologically more active S(-)- propranolol differs from the R(+)- isomer in higher permeability-surface area product, intrinsic clearance, and intracellular binding site values.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The disposition kinetics of [H-3] taurocholate ([H-3]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. 2 The serum biochemistry levels, the outflow profiles and biliary recovery of [H-3] TC were measured in three experimental groups: (i) control; (ii) 17α-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. 3 A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [H-3]TC in the normal and cholestatic livers better than the other pharmacokinetic models. 4 An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [H-3]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. 5 There were good correlations between the predicted and observed pharmacokinetic parameters of [H-3]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [H-3]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential regulation of suppressor of cytokine signaling-3 in the liver and adipose tissue of the sheep fetus in late gestation. Am J Physiol Regul Integr Comp Physiol 290: R1044 - R1051, 2006. First published November 10, 2005; doi: 10.1152/ajpregu. 00573.2005. - It is unknown whether the JAK/STAT/suppressor of cytokine signaling-3 (SOCS-3) intracellular signaling pathway plays a role in tissue growth and metabolism during fetal life. We investigated whether there is a differential profile of SOCS-3 expression in the liver and perirenal adipose tissue during the period of increased fetal growth in late gestation and the impact of fetal growth restriction on SOCS-3 expression in the fetal liver. We also determined whether basal SOCS-3 expression in the fetal liver and perirenal adipose tissue is regulated by endogenous fetal prolactin (PRL). SOCS-3 mRNA abundance was higher in the liver than in the pancreas, spleen, and kidney of the sheep fetus during late gestation. In the liver, SOCS-3 mRNA expression was increased (P < 0.05) between 125 (n < 4) and 145 days (n < 7) gestation and lower (P < 0.05) in growth-restricted compared with normally grown fetal sheep in late gestation. The relative expression of SOCS-3 mRNA in the fetal liver was directly related to the mean plasma PRL concentrations during a 48-h infusion of either a dopaminergic agonist, bromocriptine (n < 7), or saline (n < 5), such that SOCS-3 mRNA expression was lower when plasma PRL concentrations decreased below similar to 20 ng/ml [y = 0.99 - (2.47/x) + (4.96/x(2)); r(2) = 0.91, P < 0.0001, n < 12]. No relationship was shown between the abundance of phospho-STAT5 in the fetal liver and circulating PRL. SOCS-3 expression in perirenal adipose tissue decreased (P < 0001) between 90 - 91 (n < 6) and 140 - 145 days (n < 9) gestation and was not related to endogenous PRL concentrations. Thus SOCS-3 is differentially expressed and regulated in key fetal tissues and may play an important and tissue-specific role in the regulation of cellular proliferation and differentiation before birth.

Relevância:

30.00% 30.00%

Publicador: