822 resultados para Lived spaces
Resumo:
We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.
Resumo:
We characterize the essential spectra of Toeplitz operators Ta on weighted Bergman spaces with matrix-valued symbols; in particular we deal with two classes of symbols, the Douglas algebra C+H∞ and the Zhu class Q := L∞ ∩VMO∂ . In addition, for symbols in C+H∞ , we derive a formula for the index of Ta in terms of its symbol a in the scalar-valued case, while in the matrix-valued case we indicate that the standard reduction to the scalar-valued case fails to work analogously to the Hardy space case. Mathematics subject classification (2010): 47B35,
Resumo:
We discuss some of the recent progress in the field of Toeplitz operators acting on Bergman spaces of the unit disk, formulate some new results, and describe a list of open problems -- concerning boundedness, compactness and Fredholm properties -- which was presented at the conference "Recent Advances in Function Related Operator Theory'' in Puerto Rico in March 2010.
Resumo:
We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.
Resumo:
We study Hankel operators on the weighted Fock spaces Fp. The boundedness and compactness of these operators are characterized in terms of BMO and VMO, respectively. Along the way, we also study Berezin transform and harmonic conjugates on the plane. Our results are analogous to Zhu's characterization of bounded and compact Hankel operators on Bergman spaces of the unit disk.
Resumo:
Abstract. We prove that the vast majority of JC∗-triples satisfy the condition of universal reversibility. Our characterisation is that a JC∗-triple is universally reversible if and only if it has no triple homomorphisms onto Hilbert spaces of dimension greater than two nor onto spin factors of dimension greater than four. We establish corresponding characterisations in the cases of JW∗-triples and of TROs (regarded as JC∗-triples). We show that the distinct natural operator space structures on a universally reversible JC∗-triple E are in bijective correspondence with a distinguished class of ideals in its universal TRO, identify the Shilov boundaries of these operator spaces and prove that E has a unique natural operator space structure precisely when E contains no ideal isometric to a nonabelian TRO. We deduce some decomposition and completely contractive properties of triple homomorphisms on TROs.
Resumo:
Correlations between various chemical species simulated by the Canadian Middle Atmosphere Model, a general circulation model with fully interactive chemistry, are considered in order to investigate the general conditions under which compact correlations can be expected to form. At the same time, the analysis serves to validate the model. The results are compared to previous work on this subject, both from theoretical studies and from atmospheric measurements made from space and from aircraft. The results highlight the importance of having a data set with good spatial coverage when working with correlations and provide a background against which the compactness of correlations obtained from atmospheric measurements can be confirmed. It is shown that for long-lived species, distinct correlations are found in the model in the tropics, the extratropics, and the Antarctic winter vortex. Under these conditions, sparse sampling such as arises from occultation instruments is nevertheless suitable to define a chemical correlation within each region even from a single day of measurements, provided a sufficient range of mixing ratio values is sampled. In practice, this means a large vertical extent, though the requirements are less stringent at more poleward latitudes.
Resumo:
The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.
Resumo:
This article focuses on the characteristics of persistent thin single-layer mixed-phase clouds. We seek to answer two important questions: (i) how does ice continually nucleate and precipitate from these clouds, without the available ice nuclei becoming depleted? (ii) how do the supercooled liquid droplets persist in spite of the net flux of water vapour to the growing ice crystals? These questions are answered quantitatively using in situ and radar observations of a long-lived mixed-phase cloud layer over the Chilbolton Observatory. Doppler radar measurements show that the top 500 m of cloud (the top 250 m of which is mixed-phase, with ice virga beneath) is turbulent and well-mixed, and the liquid water content is adiabatic. This well-mixed layer is bounded above and below by stable layers. This inhibits entrainment of fresh ice nuclei into the cloud layer, yet our in situ and radar observations show that a steady flux of ≈100 m−2s−1 ice crystals fell from the cloud over the course of ∼1 day. Comparing this flux to the concentration of conventional ice nuclei expected to be present within the well-mixed layer, we find that these nuclei would be depleted within less than 1 h. We therefore argue that nucleation in these persistent supercooled clouds is strongly time-dependent in nature, with droplets freezing slowly over many hours, significantly longer than the few seconds residence time of an ice nucleus counter. Once nucleated, the ice crystals are observed to grow primarily by vapour deposition, because of the low liquid water path (21 g m−2) yet vapour-rich environment. Evidence for this comes from high differential reflectivity in the radar observations, and in situ imaging of the crystals. The flux of vapour from liquid to ice is quantified from in situ measurements, and we show that this modest flux (3.3 g m−2h−1) can be readily offset by slow radiative cooling of the layer to space.
Resumo:
We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 01. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.
Resumo:
This paper discusses concepts of space within the planning literature, the issues they give rise to and the gaps they reveal. It then introduces the notion of 'fractals' borrowed from complexity theory and illustrates how it unconsciously appears in planning practice. It then moves on to abstract the core dynamics through which fractals can be consciously applied and illustrates their working through a reinterpretation of the People's Planning Campaign of Kerala, India. Finally it highlights the key contribution of the fractal concept and the advantages that this conceptualisation brings to planning.