938 resultados para Linear Mixed Integer Multicriteria Optimization
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum amplifier- placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required.
Resumo:
Optical networks based on passive star couplers and employing wavelength-division multiplexing (WDhf) have been proposed for deployment in local and metropolitan areas. Amplifiers are required in such networks to compensate for the power losses due to splitting and attenuation. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. The general problem of minimizing the total amplifier count, subject to the device constraints, is a mixed-integer non-linear problem. Previous studies have attacked the amplifier placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. In this paper, we present a method to solve the minimum amplifier- placement problem while avoiding the equally powered- wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required in several small to medium-sized networks.
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.