929 resultados para Linear Analytical Systems
Resumo:
This paper is focused on the study of the important property of the asymptotic hyperstability of a class of continuous-time dynamic systems. The presence of a parallel connection of a strictly stable subsystem to an asymptotically hyperstable one in the feed-forward loop is allowed while it has also admitted the generation of a finite or infinite number of impulsive control actions which can be combined with a general form of nonimpulsive controls. The asymptotic hyperstability property is guaranteed under a set of sufficiency-type conditions for the impulsive controls.
Resumo:
One of the major concerns in an Intelligent Transportation System (ITS) scenario, such as that which may be found on a long-distance train service, is the provision of efficient communication services, satisfying users' expectations, and fulfilling even highly demanding application requirements, such as safety-oriented services. In an ITS scenario, it is common to have a significant amount of onboard devices that comprise a cluster of nodes (a mobile network) that demand connectivity to the outside networks. This demand has to be satisfied without service disruption. Consequently, the mobility of the mobile network has to be managed. Due to the nature of mobile networks, efficient and lightweight protocols are desired in the ITS context to ensure adequate service performance. However, the security is also a key factor in this scenario. Since the management of the mobility is essential for providing communications, the protocol for managing this mobility has to be protected. Furthermore, there are safety-oriented services in this scenario, so user application data should also be protected. Nevertheless, providing security is expensive in terms of efficiency. Based on this considerations, we have developed a solution for managing the network mobility for ITS scenarios: the NeMHIP protocol. This approach provides a secure management of network mobility in an efficient manner. In this article, we present this protocol and the strategy developed to maintain its security and efficiency in satisfactory levels. We also present the developed analytical models to analyze quantitatively the efficiency of the protocol. More specifically, we have developed models for assessing it in terms of signaling cost, which demonstrates that NeMHIP generates up to 73.47% less signaling compared to other relevant approaches. Therefore, the results obtained demonstrate that NeMHIP is the most efficient and secure solution for providing communications in mobile network scenarios such as in an ITS context.
Resumo:
This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.
A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.
In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.
The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
The response of linear, viscous damped systems to excitations having time-varying frequency is the subject of exact and approximate analyses, which are supplemented by an analog computer study of single degree of freedom system response to excitations having frequencies depending linearly and exponentially on time.
The technique of small perturbations and the methods of stationary phase and saddle-point integration, as well as a novel bounding procedure, are utilized to derive approximate expressions characterizing the system response envelope—particularly near resonances—for the general time-varying excitation frequency.
Descriptive measurements of system resonant behavior recorded during the course of the analog study—maximum response, excitation frequency at which maximum response occurs, and the width of the response peak at the half-power level—are investigated to determine dependence upon natural frequency, damping, and the functional form of the excitation frequency.
The laboratory problem of determining the properties of a physical system from records of its response to excitations of this class is considered, and the transient phenomenon known as “ringing” is treated briefly.
It is shown that system resonant behavior, as portrayed by the above measurements and expressions, is relatively insensitive to the specifics of the excitation frequency-time relation and may be described to good order in terms of parameters combining system properties with the time derivative of excitation frequency evaluated at resonance.
One of these parameters is shown useful for predicting whether or not a given excitation having a time-varying frequency will produce strong or subtle changes in the response envelope of a given system relative to the steady-state response envelope. The parameter is shown, additionally, to be useful for predicting whether or not a particular response record will exhibit the “ringing” phenomenon.