976 resultados para Light Scattering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impetus for the increasing interest in studying surface active ionic liquids (SAILs; ionic liquids with long-chain ""tails"") is the enormous potential for their applications, e.g., in nanotechnology and biomedicine. The progress in these fields rests on understanding the relationship between surfactant structure and solution properties, hence applications. This need has prompted us to extend our previous study on 1-(1-hexadecyl)-3-methylimidazolium chloride to 1-(1-alkyl)-3-methylimidazolium chlorides, with alkyl chains containing 10, 12, and 14 carbons. In addition to investigating relevant micellar properties, we have compared the solution properties of the imidazolium-based surfactants with: 1-(1-alkyl)pyridinium chlorides, and benzyl (2-acylaminoethyl)dimethylammonium chlorides. The former series carries a heterocyclic ring head-group, but does not possess a hydrogen that is as acidic as H2 of the imidazolium ring. The latter series carries an aromatic ring, a quaternary nitrogen and (a hydrogen-bond forming) amide group. The properties of the imidazolium and pyridinium surfactants were determined in the temperature range from 15 to 75 degrees C. The techniques employed were conductivity, isothermal titration calorimetry, and static light scattering. The results showed the important effects of the interactions in the interfacial region on the micellar properties over the temperature range studied. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids, ILs, carrying long-chain alkyl groups are surface active, SAIIs. We investigated the micellar properties of the SAIL 1-hexadecyl-3-methylimidazolium chloride, C(16)MeImCl, and compared the data with 1-hexadecylpyridinium chloride, C(16)PYCl, and benzyl (3-hexadecanoylaminoethyl)dimethylammonium chloride, C(15)AEtBzMe(2)Cl. The properties compared include critical micelle concentration, cmc; thermodynamic parameters of micellization; empirical polarity and water concentrations in the interfacial regions. In the temperature range from 15 to 75 degrees C, the order of cmc in H(2)O and in D(2)O is C(16)PYCl > C(16)MeImCl > C(15)AEtBzMe(2)Cl. The enthalpies of micellization, Delta H(mic)(degrees), were calculated indirectly from by use of the van`t Hoff treatment; directly by isothermal titration calorimetry, ITC. Calculation of the degree of counter-ion dissociation, alpha(mic), from conductivity measurements, by use of Evans equation requires knowledge of the aggregation numbers, N(agg), at different temperatures. We have introduced a reliable method for carrying out this calculation, based on the volume and length of the monomer, and the dependence of N(agg) on temperature. The N(agg) calculated for C(16)PyCl and C(16)MeImCl were corroborated by light scattering measurements. Conductivity- and ITC-based Delta H(mic)(degrees) do not agree; reasons for this discrepancy are discussed. Micelle formation is entropy driven: at all studied temperatures for C(16)MeImCl; only up to 65 degrees C for C(16)PyCl; and up to 55 degrees C for C(15)AEtBzMe(2)Cl. All these data can be rationalized by considering hydrogen-bonding between the head-ions of the monomers in the micellar aggregate. The empirical polarities and concentrations of interfacial water were found to be independent of the nature of the head-group. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper describes the synthesis and characterization by dynamic light scattering, X-ray diffraction, scanning electron microscopy and atomic force microscopy of Laponite RD/Sodium polystyrenesulfonate nanocomposites obtained by radical photopolymerization initiated by the cationic dye safranine. The presence of the clay mineral does not affect the hydrotropic aggregation of the monomers, but allows a better deaggregation of the initiator molecules, decreasing the quenching of the excited states that leads to the radicals that initiate polymerization. Increasing the amount of clay mineral loading in the polymerization mixture promotes higher monomer conversion and faster polymerization. The size of the nanocomposite particles, measured by light scattering decreases from 400 to 80 nm for clay mineral loadings of 1.0 wt.%. The X-ray diffraction patterns indicate that the clay mineral does not present a regular crystalline structure in the nanocomposite. Atomic force microscopy studies show films of sodium polystyrenesulfonate polymer with embedded Laponite platelets in its structure, forming 1-8 nm height and 25-100 nm diameter aggregates. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As técnicas de fluorimetria, condutometria, viscosimetria, turbidimetria, espalhamento de luz e espalhamento de raios-X a baixo ângulo (SAXS) foram empregadas no estudo da agregação de diferentes surfactantes aniônicos em presença de soluções aquosas diluídas de (hidroxipropil)celulose (HPC) 0,25% m/m, (hidroxipropilmetil)celulose (HPMC) 0,20% m/m e HPMC 0,10% m/m / NaCl 0,10 mol L-1. Também foram investigadas através de SAXS soluções concentradas de HPC (30, 40 e 50% m/m). Admitindo-se uma faixa geral de concentração, entre 10-4 e 10-1 mol L-1, foram utilizados neste estudo os surfactantes colato de sódio (CS), deoxicolato de sódio (DC), derivados dos sais biliares, e o alquilsintético dodecilsulafato de sódio (SDS). Observou-se que os polímeros contribuem diferentemente no processo de agregação de cada surfactante, evidenciado pela mudança dos valores da concentração de agregação crítica (CAC) em relação à concentração micelar crítica (CMC). Os resultados condutométricos confirmaram a interação éteres de celulose/sais biliares, embora a mesma tenha se mostrado mais fraca em relação a éteres de celulose/SDS. Os dados termodinâmicos demonstraram que a formação de agregados polímero/surfactante apresenta maior estabilidade do que as próprias micelas livres. Os resultados de viscosimetria e turbidimetria evidenciaram as diferenças estruturais entre HPC e HPMC, assim como entre os surfactantes. Através do espalhamento de luz dinâmico, verificou-se a existência de dois modos de correlação, rápido e lento. O primeiro é atribuído à cadeia polimérica isolada, agregados polímero/surfactante intramoleculares ou mesmo a micelas livres. Por sua vez, o modo lento relaciona-se a clusters poliméricos ou agregados polímero/surfactante intermoleculares. Adicionalmente, as curvas de distribuição dos tempos de relaxação demonstraram a influência de cada surfactante sobre a dinâmica dos polímeros. Tal influência é percebida antes mesmo da CAC, contrariando o modelo da interação polímero/surfactante proposto por Cabane. Os resultados de SAXS acusaram a formação de domínios líquido-cristalinos em xx soluções concentradas de HPC, assim como confirmaram a presença de micelas livres a altas concentrações de surfactantes nos sistemas diluídos. Em linhas gerais, os resultados indicaram a interação dos polímeros com SDS mais efetiva do que os mesmos polímeros e os sais biliares. No que tange à natureza do polímero, a HPC mostrou uma maior estabilidade na sua interação com os surfactantes do que a HPMC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene therapy, which involves the transfer of nucleic acid into target cells in patients, has become one of the most important and widely explored strategies to treat a variety of diseases, such as cancer, infectious diseases and genetic disorders. Relative to viral vectors that have high immunogenicity, toxicity and oncogenicity, non-viral vectors have gained a lot of interest in recent years. This is largely due to their ability to mimic viral vector features including the capacity to overcome extra- and intra-cellular barriers and to enhance transfection efficiency. Polyethyleneimine (PEI) has been extensively investigated as a non-viral vector. This cationic polymer, which is able to compact nucleic acid through electrostatic interactions and to transport it across the negatively charged cell membranes, has been shown to effectively transfect nucleic acid into different cell lines. Moreover, entrapment of gold nanoparticles (Au NPs) into such an amine-terminated polymer template has been shown to significantly enhance gene transfection efficiency. In this work, a novel non-viral nucleic acid vector system for enhanced and targeted nucleic acid delivery applications was developed. The system was based on the functionalization of PEI with folic acid (FA; for targeted delivery to cancer cells overexpressing FA receptors on their surface) using polyethylene glycol (PEG) as a linker molecule. This was followed by the preparation of PEI-entrapped Au NPs (Au PENPs; for enhancement of transfection efficiency). In the synthesis process, the primary amines of PEI were first partially modified with fluorescein isothiocyanate (FI) using a molar ratio of 1:7. The formed PEI-FI conjugate was then further modified with either PEG or PEGylated FA using a molar ratio of 1:1. This process was finally followed by entrapment of Au NPs into the modified polymers. The resulting conjugates and Au PENPs were characterized by several techniques, namely Nuclear Magnetic Resonance, Dynamic Light Scattering and Ultraviolet-Visible Spectroscopy, to assess their physicochemical properties. In the cell biology studies, the synthesized conjugates and their respective Au PENPs were shown to be non-toxic towards A2780 human ovarian carcinoma cells. The role of these materials as gene delivery agents was lastly evaluated. In the gene delivery studies, the A2780 cells were successfully transfected with plasmid DNA using the different vector systems. However, FA-modification and Au NPs entrapment were not determinant factors for improved transfection efficiency. In the gene silencing studies, on the other hand, the Au PENPs were shown to effectively deliver small interfering RNA, thereby reducing the expression of the B-cell lymphoma 2 protein. Based on these results, we can say that the systems synthesized in this work show potential for enhanced and targeted gene therapy applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle