997 resultados para Library buildings -- Tarragona (Spain)
Resumo:
Background. Health care professionals, especially those working in primary health-care services, can play a key role in preventing and responding to intimate partner violence. However, there are huge variations in the way health care professionals and primary health care teams respond to intimate partner violence. In this study we tested a previously developed programme theory on 15 primary health care center teams located in four different Spanish regions: Murcia, C Valenciana, Castilla-León and Cantabria. The aim was to identify the key combinations of contextual factors and mechanisms that trigger a good primary health care center team response to intimate partner violence. Methods. A multiple case-study design was used. Qualitative and quantitative information was collected from each of the 15 centers (cases). In order to handle the large amount of information without losing familiarity with each case, qualitative comparative analysis was undertaken. Conditions (context and mechanisms) and outcomes, were identified and assessed for each of the 15 cases, and solution formulae were calculated using qualitative comparative analysis software. Results. The emerging programme theory highlighted the importance of the combination of each team’s self-efficacy, perceived preparation and women-centredness in generating a good team response to intimate partner violence. The use of the protocol and accumulated experience in primary health care were the most relevant contextual/intervention conditions to trigger a good response. However in order to achieve this, they must be combined with other conditions, such as an enabling team climate, having a champion social worker and having staff with training in intimate partner violence. Conclusions. Interventions to improve primary health care teams’ response to intimate partner violence should focus on strengthening team’s self-efficacy, perceived preparation and the implementation of a woman-centred approach. The use of the protocol combined with a large working experience in primary health care, and other factors such as training, a good team climate, and having a champion social worker on the team, also played a key role. Measures to sustain such interventions and promote these contextual factors should be encouraged.
Resumo:
The Bajo Segura Basin (eastern Betic Cordillera) is a Mediterranean marginal basin where the Messinian Erosional Surface (MES), formed during the Messinian Salinity Crisis sea-level fall, is well developed. Overlying this major discontinuity the lower Pliocene transgressive sediments record the reflooding of the Mediterranean and the return to an open marine environment, the continental shelf being rebuilt after the Messinian erosion. The stratigraphic and biostratigraphic study of six sections allows two transgressive-regressive sequences filling the MES to be distinguished, correlated with the previously distinguished Mediterranean offshore seismic units. Ten calcareous nannofossil bioevents have been identified. The lower sequence can be dated according to nannofossil biozones NN12 to NN14 and the upper sequence by NN15 to NN16. The boundary between both lower Pliocene sedimentary sequences occur after the first common occurrence (FCO) of Discoaster asymmetricus found in the uppermost sediments of the lower sequence and before the first occurrence (FO) of Discoaster tamalis in the lowermost part of the upper sequence. Thus this sequence boundary can be estimated at between 4.1 and 4.0Ma ago.
Resumo:
From the late seventeenth to early nineteenth centuries, many religious temples have been built in the province of Alicante (south east of Spain) with brick domes as their main characteristic feature. Often, the limited data available about these remarkable constructions make rehabilitation interventions become into real research projects, with a high value for their historic conservation over time. The aim of this paper is to show a detailed refurbishment analysis of a religious temple built in 1778, showing the need of preservation of historic buildings as a part of the architectural heritage by establishing a common pattern of materials, geometry and constructive systems, specifically in their domes. In most cases, there was not an architectural project for the construction, that is why the analysis of any documentary and archival sources available is essential to find different ways to proceed on the use and maintenance of these religious buildings.
Resumo:
The subject of Construction of Structures I studies, from a constructive point of view and taking into account current legislation, reinforced concrete structures used in buildings, through the acquisition of knowledge and construction criteria required in the profession of a Technical Architect. The contents acquired in this course are essential for further professional development of technicians and are closely related to many of the subjects taught in the same or other courses of the Degree in Technical Architecture at the University of Alicante. The aim of this paper is to present, analyze and discuss the development of a new methodology proposed in the mentioned subject, as it supposed an important change in the traditional way of teaching Construction and Structures I. In order to incorporate new teaching tools in 2013-2014, the course has been implemented by using a Moodle software tool to promote blended learning with online exercises. Our Moodle community allows collaborative work within an open-source platform where teachers and students share a new and personalized learning environment. Students are easily used to the interface and the platform, value the constant connection with teachers or other fellows and completely agree with the possibility of making questions or share documents 24 hours a day. The proposed methodology consists of lectures and practical classes. In the lectures, the basics of each topic are discussed; class attendance, daily study and conducting scheduled exercises are indispensable. Practical classes allow to consolidate the knowledge gained in theory classes by solving professional exercises and actual construction problems related to structures, that shall be compulsorily delivered online. So, after the correction of the teacher and the subsequent feedback of students, practical exercises ensure lifelong learning of the student, who can download any kind of material at any time (constructive details, practical exercises and even corrected exams). Regarding the general evaluation system, goals achievement is assessed on an ongoing basis (65% of the final mark) along the course through written and graphic evidences in person and online, as well as a individual development of a workbook. In all cases, the acquisition of skills, the ability to synthesize, the capacity of logical and critical thinking are assessed. The other 35 % of the mark is evaluated by a complementary graphic exam. Participation in the computing platform is essential and the student is required to do and present, at least 90% of the practices proposed. Those who do not comply with the practices in each specific date could not be assessed continuously and may only choose the final exam. In conclusion, the subject of Construction of Structures I is essential in the development of the regulated profession of Technical Architect as they are considered, among other professional profiles, as specialists in construction of building structures. The use of a new communication platform and online teaching allows the acquisition of knowledge and constructive approaches in a continuous way, with a more direct and personal monitoring by the teacher that has been highly appreciated by almost 100% of the students. Ultimately, it is important to say that the use of Moodle in this subject is a very interesting tool, which was really well welcome by students in one of the densest and important subjects of the Degree of Technical Architecture.
Resumo:
Introducing teaching about healthy solutions in buildings and BIM has been a challenge for the University of Alicante. Teaching attached to very tighten study plans conditioned the types of methods that could be used in the past. The worldwide situation of crisis that especially reached Spain and the bursting of the housing bubble generated a lack of employment that reached universities where careers related to construction, Architecture and Architectural Technologist, suffered a huge reduction in the number of students enrolled. In the case of the University of Alicante, students’ enrolment for Architectural Technology reached an 80% reduction. The necessity of a reaction against this situation made the teachers be innovative and use the new Bologna adapted study plans to develop new teaching experiences introducing new concepts: people wellbeing in buildings and BIM. Working with healthy solutions in buildings provided new approaches for building design and construction as an alternative to sustainability. For many years sustainability was the concept that applied to housing gave buildings an added value and the possibility of having viability in a very complex scenario. But after lots of experiences, the approved methodologies for obtaining sustainable housing were ambiguous and at the end, investors, designers, constructors and purchasers cannot find real and validated criteria for obtaining an effective sustainable house. It was the moment to work with new ideas and concepts and start facing buildings from the users’ point of view. At the same time the development of new tools, BIM, has opened a wide range of opportunities, innovative and suggestive, that allows simulation and evaluation of many building factors. This paper describes the research in teaching developed by the University of Alicante to adapt the current study plans, introducing work with healthy solutions in buildings and the use of BIM, with the aim of attracting students by improving their future employability. Pilot experiences have been carried out in different subjects based on the work with projects and case studies under an international frame with the cooperation of different European partner universities. The use of BIM tools, introduced in 2014, solved the problems that appeared in some subjects, mainly building construction, and helped with the evaluation of some healthy concepts that presented difficulties until this moment as knowledge acquired by the students was hard to be evaluated. The introduction of BIM tools: Vasari, FormIt, Revit and Light Control among others, allowed the study of precise healthy concepts and provided the students a real understand of how these different parameters can condition a healthy architectural space. The analysis of the results showed a clear acceptance by the students and gave teachers the possibility of opening new research lines. At the same time, working with BIM tools to obtain healthy solutions in building has been a good option to improve students’ employability as building market in Spain is increasing the number of specialists in BIM with a wider knowledge.
Resumo:
This bound volume, likely assembled by the Corporation in the 1850s, contains documents related to Harvard buildings which have been pasted onto the pages. The volume consists of correspondence and memoranda pertaining to the construction of Holworthy Hall, 1811-1812; contracts and correspondence relating to the construction of University Hall, 1813-1814; and correspondence regarding repairs to Massachusetts Hall overseen by Loammi Baldwin in 1812. Additional records pertaining to the construction of Gore Hall, 1834-1838; and the repairs to the Medical College on Mason Street in Boston, 1824 are also located in this volume.
Resumo:
Known as the Bulfinch view, this proposed site plan of the College grounds by Charles Bulfinch depicts University Hall at the center of the drawing surrounded by Massachusetts, Harvard, Hollis, Stoughton, and Holworthy Halls. Several unlabeled buildings are displayed in the plan.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte des l'isles de Maiorque, Minorque et d'Yvice, gravée par Matthieu Seutter, Geographe de S.M. Imper. et Cathol. ; Tob. Conr. Lotter, sc. It was published by M. Seutter ca. 1756. Scale [ca. 1:560,000]. Covers Majorca Island, Minorca Island, and Isla de Ibiza, Spain. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 31N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, road, shoreline features, and more. Relief shown by hachures and pictorially. Includes 2 insets, one showing the islands and the western part of the Mediterranean, and, "Plan du port et ville de Mahon, du Fort. St. Philippe et ses fortifications."This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of the Isle of Minorca, geometrically survey'd by the Royal Engineers, while it remained in the possesion of the French during the last war ; and digested by L.S. de la Rochette. It was published by William Faden in 1780. Scale [ca. 1:52,800]. Covers Minorca Island, Spain. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 31N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, villages and other human settlements, fortifications, shoreline features, ground cover, and more. Relief shown by hachures. Includes text and "Explanation of some Minorcan names."This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of the Isle of Minorca, geometrically survey'd by the Royal Engineers, while it remained in the possesion of the French during the last war ; and digested by L.S. de la Rochette. It was published by William Faden in 1780. Scale [ca. 1:52,800]. Covers Minorca Island, Spain. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 31N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, villages and other human settlements, fortifications, shoreline features, ground cover, and more. Relief shown by hachures. Includes text and "Explanation of some Minorcan names."This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Grundress von Lissabon 1808, E. Müller jun sc. It was published in [1808]. Scale [ca. 1:34,000]. Covers a portion of Lisbon, Portugal. The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, UTM Zone 29N coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortification, and more. Relief is shown by hachures. Includes location map covering Spain and Portugal and inset view: Ansicht von Lissabon. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Les Isles Canariespar P. Du Val d'Abbeville, Geographe Ordinaire du Roy. It was published by chez Pierre Mariette, rue S. Jacque a l'Esperance, avec privilege in 1653. Scale [ca. 1:1,050,000]. Covers the Canary Islands, Spain. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Mercator projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, villages and other human settlements, shoreline features, anchorage points, and more. Relief shown pictorially. Includes also notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Mapa de la isla de Fuerteventura, por Don Tomás Lopez, geografo de los dominios de S. M. de las Reales academias de la historia, de San Fernando, de la de buenas letras de Sevilla y de la Sociedad Bascongada de los amigos del pais. It was published by se hallará este con todas las obras del autor en la Calle de las Carretas entrando por la Plazuela del Angel in 1779. Scale [ca. 1:280,000]. Covers Isla de Fuerteventura, Canary Islands, Spain. Map in Spanish.The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Mercator projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, villages and other human settlements, roads, shoreline features, ports and anchorage points, and more. Relief shown by hachures. Includes note on the mapping of Fuerteventura.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Isla de la Gran Canaria, por Don Tomás Lopez, geografo de los dominios de S. M., de las Reales academias de la historia, de San Fernando, de la de buenas letras de Sevilla y de la Sociedad Bascongada de los amigos del pais. It was published by se hallará este con todas las obras del autor en la Calle de las Carretas entrando por la Plazuela del Angel in 1780. Scale [ca. 1:280,000]. Covers Isla de Gran Canaria, Canary Islands, Spain. Map in Spanish.The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Mercator projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, land cover, cities and towns, villages and other human settlements, towers, hospitals, parishes, shoreline features, ports and anchorage points, and more. Relief shown by hachures. Includes note on the mapping of Isla de Gran Canaria.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.