997 resultados para Leaf:stem ratio


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The objective of this study was to analyze the incidence of and risk factors for healthcare-associated infections (HAI) among hematopoietic stem cell transplantation (HSCT) patients, and the impact of such infections on mortality during hospitalization. Methods: We conducted a 9-year (2001-2009) retrospective cohort study including patients submitted to HSCT at a reference center in Sao Paulo, Brazil. The incidence of HAI was calculated using days of neutropenia as the denominator. Data were analyzed using EpiInfo 3.5.1. Results: Over the 9-year period there were 429 neutropenic HSCT patients, with a total of 6816 days of neutropenia. Bloodstream infections (BSI) were the most frequent infection, presenting in 80 (18.6%) patients, with an incidence of 11.7 per 1000 days of neutropenia. Most bacteremia was due to Gram-negative bacteria: 43 (53.8%) cases were caused by Gram-negative species, while 33 (41.2%) were caused by Gram-positive species, and four (5%) by fungal species. Independent risk factors associated with HAI were prolonged neutropenia (odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.10) and duration of fever (OR 1.20, 95% CI 1.12-1.30). Risk factors associated with death in multivariate analyses were age (OR 1.02, 95% CI 1.01-1.43), being submitted to an allogeneic transplant (OR 3.08, 95% CI 1.68-5.56), a microbiologically documented infection (OR 2.96, 95% CI 1.87-4.6), invasive aspergillosis disease (OR 2.21, 95% CI 1.1-4.3), and acute leukemias (OR 2.24, 95% CI 1.3-3.6). Conclusions: BSI was the most frequent HAI, and there was a predominance of Gram-negative microorganisms. Independent risk factors associated with HAI were duration of neutropenia and fever, and the risk factors for a poor outcome were older age, type of transplant (allogeneic), the presence of a microbiologically documented infection, invasive aspergillosis, and acute leukemia. Further prospective studies with larger numbers of patients may confirm the role of these risk factors for a poor clinical outcome and death in this transplant population. (C) 2012 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomere attrition induces cell senescence and apoptosis. We hypothesized that age-adjusted pretransplantation telomere length might predict treatment-related mortality (TRM) after hematopoietic stem cell transplantation (HSCT). Between 2000 and 2005, 178 consecutive patients underwent HSCT from HLA-identical sibling donors after myeloablative conditioning regimens, mainly for hematologic malignancies (n = 153). Blood lymphocytes' telomere length was measured by real-time quantitative PCR before HSCT. Age-adjusted pretransplantation telomere lengths were analyzed for correlation with clinical outcomes. After age adjustment, patients' telomere-length distribution was similar among all 4 quartiles except for disease stage. There was no correlation between telomere length and engraftment, GVHD, or relapse. The overall survival was 62% at 5 years (95% confidence interval [CI], 54-70). After a median follow-up of 51 months (range, 1-121 months), 43 patients died because of TRM. The TRM rate inversely correlated with telomere length. TRM in patients in the first (lowest telomere length) quartile was significantly higher than in patients with longer telomeres (P = .017). In multivariate analysis, recipients' age (hazard ratio, 1.1; 95% CI, .0-1.1; P = .0001) and age-adjusted telomere length (hazard ratio, 0.4; 95% CI; 0.2-0.8; P = .01) were independently associated with TRM. In conclusion, age-adjusted recipients' telomere length is an independent biologic marker of TRM after HSCT. (Blood. 2012;120(16):3353-3359)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of a prospective, randomized phase 3 trial evaluating autologous peripheral blood stem cell transplantation (ASCT) versus intensive consolidation chemotherapy in newly diagnosed AML patients in complete remission (CR1). Patients with AML (16-60 years) in CR1 after 2 cycles of intensive chemotherapy and not eligible for allogeneic SCT were randomized between intensive chemotherapy with etoposide and mitoxantrone or ASCT ater high-dose cyclophosphamide and busulfan. Of patients randomized (chemotherapy, n = 259; ASCT, n = 258), more than 90% received their assigned treatment. The 2 groups were comparable with regard to prognostic factors. The ASCT group showed a markedly reduced relapse rate (58% vs 70%, P = .02) and better relapse-free survival at 5 years (38% vs 29%, P = .065, hazard ratio = 0.82; 95% confidence interval, 0.66-1.1) with nonrelapse mortality of 4% versus 1% in the chemotherapy arm (P = .02). Overall survival was similar (44% vs 41% at 5 years, P = .86) because of more opportunities for salvage with second-line chemotherapy and stem cell transplantation in patients relapsing on the chemotherapy arm. This large study shows a relapse advantage for ASCT as postremission therapy but similar survival because more relapsing patients on the chemotherapy arm were salvaged with a late transplantation for relapse. This trial is registered at www.trialregister.nl as #NTR230 and #NTR291.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is a key feature of plant architecture. Current models propose that the spatiotemporal regulation of organ initiation is controlled by a positive feedback loop between the plant hormone auxin and its efflux carrier PIN-FORMED1 (PIN1). Consequently, pin1 mutants give rise to naked inflorescence stalks with few or no flowers, indicating that PIN1 plays a crucial role in organ initiation. However, pin1 mutants do produce leaves. In order to understand the regulatory mechanisms controlling leaf initiation in Arabidopsis (Arabidopsis thaliana) rosettes, we have characterized the vegetative pin1 phenotype in detail. We show that although the timing of leaf initiation in vegetative pin1 mutants is variable and divergence angles clearly deviate from the canonical 137° value, leaves are not positioned at random during early developmental stages. Our data further indicate that other PIN proteins are unlikely to explain the persistence of leaf initiation and positioning during pin1 vegetative development. Thus, phyllotaxis appears to be more complex than suggested by current mechanistic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We hypothesized that certain patient characteristics have different effects on the risk of early stem loosening in total hip arthroplasty (THA). We therefore conducted a case-control study using register-database records with the aim of identifying patient-specific risk factors associated with radiographic signs of aseptic loosening of the femoral component in THA. METHOD: Data were derived from a multinational European registry and were collected over a period of 25 years. 725 cases with radiographic signs of stem loosening were identified and matched to 4,310 controls without any signs of loosening. Matching criteria were type of implant, size of head, date of operation, center of primary intervention, and follow-up time. The risk factors analyzed were age at operation, sex, diagnosis and previous ipsilateral operations, height, weight, body mass index and mobility based on the Charnley classification. RESULTS: Women showed significantly lower risk of radiographic loosening than men (odds ratio (OR) 0.64). Age was also a strong factor: risk decreased by 1.8% for each additional year of age at the time of surgery. Height and weight were not associated with risk of loosening. A higher body mass index, however, increased the risk of stem loosening to a significant extent (OR 1.03) per additional unit of BMI. Charnley Class B, indicating restricted mobility, was associated with lower risk of loosening (OR 0.78). INTERPRETATION: An increased activity level, as seen in younger patients and those with unrestricted mobility, is an important factor in the etiology of stem loosening. If combined with high BMI, the risk of stem loosening within 10 years is even higher. A younger person should not be denied the benefits of a total hip arthroplasty but must accept that the risk of future failure is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport of the phytohormone auxin by cellular influx and efflux carriers, such as AUX1 and PIN1. Their important role in phyllotaxis is evident from mutant phenotypes, but their exact roles in space and time are difficult to address due to the strong pleiotropic phenotypes of most mutants in phyllotaxis. Models of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis. Using amplified femtosecond laser pulses, we ablated the internal tissues in young leaf primordia of tomato (Solanum lycopersicum) without damaging the overlying L1 and L2 layers. Our results show that ablation of the future midvein leads to a transient accumulation of auxin in the primordia and to an increase in their width. Phyllotaxis was transiently affected after midvein ablations, but readjusted after two plastochrons. These results indicate that the developing midvein is involved in the basipetal transport of auxin through young primordia, which contributes to phyllotactic spacing and stability.