999 resultados para Lattice theory
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
In this paper I offer an 'integrating account' of singular causation, where the term 'integrating' refers to the following program for analysing causation. There are two intuitions about causation, both of which face serious counterexamples when used as the basis for an analysis of causation. The 'process' intuition, which says that causes and effects are linked by concrete processes, runs into trouble with cases of misconnections', where an event which serves to prevent another fails to do so on a particular occasion and yet the two events are linked by causal processes. The chance raising intuition, according to which causes raise the chance of their effects, easily accounts for misconnections but faces the problem of chance lowering causes, a problem easily accounted for by the process approach. The integrating program attempts to provide an analysis of singular causation by synthesising the two insights, so as to solve both problems. In this paper I show that extant versions of the integrating program due to Eells, Lewis, and Menzies fail to account for the chance-lowering counterexample. I offer a new diagnosis of the chance lowering case, and use that as a basis for an integrating account of causation which does solve both cases. In doing so, I accept various assumptions of the integrating program, in particular that there are no other problems with these two approaches. As an example of the process account, I focus on the recent CQ theory of Wesley Salmon (1997).
Resumo:
The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.
Resumo:
The removal of chemicals in solution by overland how from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface-mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff: to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
This study was designed to test the utility of a revised theory of planned behavior in the prediction of intentions to volunteer among older people. Such a perspective allowed for the consideration of a broader range of social and contextual factors than has been examined in previous research on volunteer decision making among older people. The article reports the findings from a study that investigated volunteer intentions and behavior in a random sample of older people aged 65 to 74 years living in an Australian capital city. Results showed that, as predicted by the revised theory of planned behavior, intention to volunteer predicted subsequent reported volunteer behavior. Intention was, in turn, predicted by social norms (both subjective and behavioral), perceived behavioral control, and moral obligation, with the effect of attitude being mediated through moral obligation.
Resumo:
This work addresses the question of whether it is possible to define simple pairwise interaction terms to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice model system one can calculate exact free energies by exhaustive enumeration. A series of approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy terms. Approximating the true free energy with pairwise interactions gives a poor fit with little transferability between systems of different size. Adding extra artificial terms to the approximation yields better fits, but does not improve the ability to generalize from one system size to another. Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free energies. Most usefully, the methodology shows how one can assess the utility of various terms in lattice protein/polymer models. (C) 2001 American Institute of Physics.
Resumo:
We consider the electronic properties of layered molecular crystals of the type theta -D(2)A where A is an anion and D is a donor molecule such as bis-(ethylenedithia-tetrathiafulvalene) (BEDT-TTF), which is arranged in the theta -type pattern within the layers. We argue that the simplest strongly correlated electron model that can describe the rich phase diagram of these materials is the extended Hubbard model on the square lattice at one-quarter filling. In the limit where the Coulomb repulsion on a single site is large, the nearest-neighbor Coulomb repulsion V plays a crucial role. When V is much larger than the intermolecular hopping integral t the ground state is an insulator with charge ordering. In this phase antiferromagnetism arises due to a novel fourth-order superexchange process around a plaquette on the square lattice. We argue that the charge ordered phase is destroyed below a critical nonzero value V, of the order of t. Slave-boson theory is used to explicitly demonstrate this for the SU(N) generalization of the model, in the large-N limit. We also discuss the relevance of the model to the all-organic family beta-(BEDT-TTF)(2)SF5YSO3 where Y=CH2CF2, CH2, CHF.
Resumo:
This essay explores the nature and significance of aesthetic approaches to international political theory. More specifically, it contrasts aesthetic with mimetic forms of representation. The latter, which have dominated the study of international relations, seek to represent politics as realistically and authentically as possible, aiming at capturing world politics as it really is. An aesthetic approach, by contrast, assumes that there is always a gap between a form of representation and what is represented therewith. Rather than ignoring or seeking to narrow this gap, as mimetic approaches do, aesthetic insight recognises that the inevitable difference between the represented and its representation is the very location of politics. The essay, thus, argues for the need to reclaim the political value of the aesthetic; not to replace social science or technological reason, but to broaden our abilities to comprehend and deal with the key dilemmas of world politics. The ensuing model of thought facilitates productive interactions across different faculties, including sensibility, imagination and reason, without any of them annihilating the unique position and insight of the other.
Resumo:
This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.