973 resultados para Lattice Relaxation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric properties of BaBi4Ti4O15 ceramics were investigated as a function of frequency (10(2)-10(6) Hz) at various temperatures (30 degrees C-470 degrees C), covering the phase transition temperature. Two different conduction mechanisms were obtained by fitting the complex impedance data to Cole-Cole equation. The grain and grain boundary resistivities were found to follow the Arrhenius law associated with activation energies: E-g similar to 1.12 eV below T-m and E-g similar to 0.70 eV above T-m for the grain conduction; and E-gb similar to 0.93 eV below T-m and E-gb similar to 0.71 eV above T-m for the grain boundary conduction. Relaxation times extracted using imaginary part of complex impedance Z `'(omega) and modulus M `'(omega) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature. The frequency dependence of conductivity was interpreted in terms of the jump relaxation model and was fitted to the double power law. (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microscopic relations between single-particle orientational relaxation time (T, ) , dielectric relaxation time ( T ~ )a,n d many-body orientational relaxation time ( T ~o)f a dipolar liquid are derived. We show that both T~ and T~ are influenced significantly by many-body effects. In the present theory, these many-body effects enter through the anisotropic part of the two-particle direct correlation function of the polar liquid. We use mean-spherical approximation (MSA) for dipolar hard spheres for explicit numerical evaluation of the relaxation times. We find that, although the dipolar correlation function is biexponential, the frequency-dependent dielectric constant is of simple Debye form, with T~ equal to the transverse polarization relaxation time. The microscopic T~ falls in between Debye and Onsager-Glarum expressions at large values of the static dielectric constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of finding a set of constraints of minimum cardinality which when relaxed in an infeasible linear program, make it feasible. We show the problem is NP-hard even when the constraint matrix is totally unimodular and prove polynomial-time solvability when the constraint matrix and the right-hand-side together form a totally unimodular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.