997 resultados para Laser-Frequency Modulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess the influence of energy and pulse repetition rate of Er:YAG laser on the enamel ablation ability and substrate morphology. Methods: Fifteen crowns of molars were sectioned in four fragments, providing 60 samples, which were ground to flatten the enamel surface. The initial mass was obtained by weighing the fragments. The specimens were hydrated for I h, fixed, and a 3-mm-diameter area was delimited. Twelve groups were randomly formed according to the combination of laser energies (200, 250, 300, or 350 mJ) and pulse repetition rates (2, 3, or 4 Hz). The final mass was obtained and mass loss was calculated by the difference between the initial and final mass. The specimens were prepared for SEM. Data were submitted to ANOVA and Scheffe test. Results: The 4 Hz frequency resulted in higher mass loss and was statistically different from 2 and 3 Hz (p < 0.05). The increase of frequency produced more melted areas, cracks, and unselective and deeper ablation. The 350 mJ energy promoted greater mass loss, similar to 300 mJ. Conclusions: The pulse repetition rate influenced more intensively the mass loss and morphological alteration. Among the tested parameters, 350 mJ/3 Hz improved the ability of enamel ablation with less surface morphological alterations. (C) 2007 Wiley Periodicals, Inc. J Biomed Mater Res.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have been made to understand the process of tissular cicatrization, as well as the possible effects of laser therapy in the wound healing. However, the influence of low frequency laser irradiation in the repairing process is not completely understood. Our study has the purpose to assess clinically the effect of postoperative irradiation of the low frequency laser in humans, and the gingival repairing process postgingivoplasty performed with the extern bevel technique. Twenty-four patients with inflammatory gingival hyperplasia were enrolled in this study, which did not reduce with basic periodontal procedures, and patients with melanin pigmentation, with esthetic indications. After surgery the test group, randomly selected by a drawing, received laser application with energy density of 4 J/cm2, immediately after surgery and each 48 hours, during a week, with a total of 4 sections. The control group did not receive irradiation. The visual clinical analyses were performed by a single blind examiner, in the 2nd, 4th, 6th, 8th, 15th and 21st days post surgery. For statistic analyses of the data was used a Q-square test. Concerning the color, the results showed a better wound healing during days 6 to 8. when assessed the degree of progress of surgical wound, the results showed that the test group had a better cicatrization compared with the control group in the 2nd, 6th, 8th and 15th days post surgery, and at the 21st day both groups had the same results. Our results confirm that the laser had clinical influence in the repairing process after gingivoplasty surgery during days 2 to 15 post surgery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a study on vinyl bromide for the search for new far infrared (FIR) laser lines. As the pump source, we use a CW waveguide CO2 laser with a tunability of 290 MHz around each line in order to pump large offset vibrational transitions. As a consequence, we obtained 28 new FIR laser emissions; 24 of them have wavelengths greater than 500 mum and are, therefore, suitable to be used in high-field EPR spectroscopy, For each of the new lines, we give the wavelength, the offset of the pumping transition with respect to the center Frequency of the CO2 emission, the polarization relative to that of the pumping laser line, the operating pressure, and the relative intensity. We also present a catalog including data of all of the FIR laser lines observed from this molecule up to now.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic (CO2)-C-13 laser was used for the first time as a pump source for this molecule, and a Fabry-Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 mu m (0.987 THz) to 725.1 mu m (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate in vitro the degree of marginal leakage in Class V cavities involving the cementoenamel junction. Cavities were 4 rum wide and 2 mm deep. The specimens received dentin pretreatment (37% phosphoric acid) followed by the Single Bond (3M) adhesive system application. The 40 specimens were then divided into four groups: Group I (control); Group 2 (Nd:YAG laser at 120 mJ/pulse, frequency of 10 Hz, power of 1.2 W); Group 3 (Nd:YAG laser at 140 mJ/pulse, frequency of 10 Hz, power of 1.4 W); Group 4 (Nd:YAG laser at 160 mJ/pulse, frequency of 10 Hz, power of 1.6 W). The cavities were restored with Z100 composite resin (3M) and light cured at 300-600 mW/cm(2) light intensity. Specimens were thermocycled to 500 cycles from 2-50 degrees C. After that, they were dried and sealed with nail varnish, respecting 1 mm around the restorations, and immersed in 0.5% methylene blue solution for 4 h. After this period, the teeth were rinsed, dried, sectioned, and analyzed in a stereoscopic loupe. The highest leakage scores were considered for each specimen. The results were statistically analyzed by the analysis of variance (ANOVA) Kruskal-Wallis test to the 5% level. For both the enamel and cementum, there was a decrease in marginal leakage with the application of laser energy; no significant differences were observed for Groups 2, 3, and 4. The results also showed a smaller tendency to marginal leakage on the cementum than on the enamel.