955 resultados para Large datasets
Resumo:
Purpose : The Hong Kong Special Administrative Region (referred to as Hong Kong from here onwards) is an international leading commercial hub particularly in Asia. In order to keep up its reputation a number of large public works projects have been considered. Public Private Partnership (PPP) has increasingly been suggested for these projects, but the suitability of using this procurement method in Hong Kong is yet to be studied empirically. The findings presented in this paper will specifically consider whether PPPs should be used to procure public works projects in Hong Kong by studying the attractive and negative factors for adopting PPP. Design/methodology/approach : As part of this study a questionnaire survey was conducted with industrial practitioners. The respondents were requested to rank the importance of fifteen attractive factors and thirteen negative factors for adopting PPP. Findings : The results found that in general the top attractive factors ranked by respondents from Hong Kong were efficiency related, these included (1) ‘Provide an integrated solution (for public infrastructure / services)’; (2) ‘Facilitate creative and innovative approaches’; and (3) ‘Solve the problem of public sector budget restraint’. It was found that Australian respondents also shared similar findings to those in Hong Kong, but the United Kingdom respondents showed a higher priority to those economic driven attractive factors. Also, the ranking of the attractive and negative factors for adopting PPP showed that on average the attractive factors were scored higher than the negative factors. Originality/value : The results of this research have enabled a comparison of the attractive and negative factors for adopting PPP between three administrative systems. These findings have confirmed that PPP is a suitable means to procure large public projects which are believed to be useful and interesting to PPP researchers and practitioners.
Resumo:
In this paper, the authors propose a new structure for the decoupling of circulant symmetric arrays of more than four elements. In this case, network element values are again obtained through a process of repeated eigenmode decoupling, here by solving sets of nonlinear equations. However, the resulting circuit is much simpler and can be implemented on a single layer. The corresponding circuit topology for the 6-element array is displayed in figure diagrams. The procedure will be illustrated by considering different examples.
Resumo:
Typical quadrotor aerial robots used in research weigh inlMMLBox and carry payloads measured in hundreds of grams. Several obstacles in design and control must be overcome to cater for expected industry demands that push the boundaries of existing quadrotor performance. The X-4 Flyer, a 4 kg quadrotor with a 1 kg payload, is intended to be prototypical of useful commercial quadrotors. The custom-built craft uses tuned plant dynamics with an onboard embedded attitude controller to stabilise flight. Independent linear SISO controllers were designed to regulate flyer attitude. The performance of the system is demonstrated in indoor and outdoor flight.
Resumo:
This paper describes technologies we have developed to perform autonomous large-scale off-world excavation. A scale dragline excavator of size similar to that required for lunar excavation was made capable of autonomous control. Systems have been put in place to allow remote operation of the machine from anywhere in the world. Algorithms have been developed for complete autonomous digging and dumping of material taking into account machine and terrain constraints and regolith variability. Experimental results are presented showing the ability to autonomously excavate and move large amounts of regolith and accurately place it at a specified location.
Resumo:
In this paper we describe the development of a three-dimensional (3D) imaging system for a 3500 tonne mining machine (dragline).Draglines are large walking cranes used for removing the dirt that covers a coal seam. Our group has been developing a dragline swing automation system since 1994. The system so far has been `blind' to its external environment. The work presented in this paper attempts to give the dragline an ability to sense its surroundings. A 3D digital terrain map (DTM) is created from data obtained from a two-dimensional laser scanner while the dragline swings. Experimental data from an operational dragline are presented.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.
Resumo:
In this paper we describe the Large Margin Vector Quantization algorithm (LMVQ), which uses gradient ascent to maximise the margin of a radial basis function classifier. We present a derivation of the algorithm, which proceeds from an estimate of the class-conditional probability densities. We show that the key behaviour of Kohonen's well-known LVQ2 and LVQ3 algorithms emerge as natural consequences of our formulation. We compare the performance of LMVQ with that of Kohonen's LVQ algorithms on an artificial classification problem and several well known benchmark classification tasks. We find that the classifiers produced by LMVQ attain a level of accuracy that compares well with those obtained via LVQ1, LVQ2 and LVQ3, with reduced storage complexity. We indicate future directions of enquiry based on the large margin approach to Learning Vector Quantization.
Resumo:
Presentation describling a project in data intensive research in the humanities. Measuring activity of publically available data in social networks such as Blogosphere, Twitter, Flickr, YouTube
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.