992 resultados para Large Mammals
Resumo:
This paper describes the communication stack of the REMPLI system: a structure using power-lines and IPbased networks for communication, for data acquisition and control of energy distribution and consumption. It is furthermore prepared to use alternative communication media like GSM or analog modem connections. The REMPLI system provides communication service for existing applications, namely automated meter reading, energy billing and domotic applications. The communication stack, consisting of physical, network, transport, and application layer is described as well as the communication services provided by the system. We show how the peculiarities of the power-line communication influence the design of the communication stack, by introducing requirements to efficiently use the limited bandwidth, optimize traffic and implement fair use of the communication medium for the extensive communication partners.
Resumo:
This paper studies the chromosome information of twenty five species, namely, mammals, fishes, birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space representation of dynamical systems is formulated. Based on this algorithm, the information of each chromosome is converted into a bidimensional distribution. The plots are then analyzed and characterized by means of Shannon entropy. The large volume of information is integrated by averaging the lengths and entropy quantities of each species. The results can be easily visualized revealing quantitative global genomic information.
Resumo:
Collective behaviours can be observed in both natural and man-made systems composed of a large number of elemental subsystems. Typically, each elemental subsystem has its own dynamics but, whenever interaction between individuals occurs, the individual behaviours tend to be relaxed, and collective behaviours emerge. In this paper, the collective behaviour of a large-scale system composed of several coupled elemental particles is analysed. The dynamics of the particles are governed by the same type of equations but having different parameter values and initial conditions. Coupling between particles is based on statistical feedback, which means that each particle is affected by the average behaviour of its neighbours. It is shown that the global system may unveil several types of collective behaviours, corresponding to partial synchronisation, characterised by the existence of several clusters of synchronised subsystems, and global synchronisation between particles, where all the elemental particles synchronise completely.
Resumo:
Small mammals from a water well near Morgadinho indicate an age comprised between Middle Villafranchian, MN 17 zone and lowermost Middle Pleistocene, MN 20. This fauna corresponds to an humid region under a possibly temperate (certainly not cool) climate. Nearly all Gastropoda have quaternary affinities. Most are freshwater dwellers. Ostracoda lived in lacustrine or extensive swamp enviromnents rich in plants. They also point out to fresh waters (eventually oligohaline; this may suggest some kind of communication with the sea, which would not be very close by), and to water temperatures over 10.5°C. Charophyta thrive in fresh, carbonate-rich waters. Cyprinid fishes are also freshwater dwellers, and amphibians exclude any significant salinity. Palynological analysis shows climate should be warm and rather humid. Near Morgadinho there was a mixte mesophytic forest (and perhaps a sempervirent, large leave type forest at Algoz). Morgadinho and Algoz (this locality being dated MN 20, lowermost Middle Pleistocene) are probably correlative, and this may also be true for lacustrine limestones at Ponte das Lavadeiras, near Faro.
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
We use the term Cyber-Physical Systems to refer to large-scale distributed sensor systems. Locating the geographic coordinates of objects of interest is an important problemin such systems. We present a new distributed approach to localize objects and events of interest in time complexity independent of number of nodes.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
OBJECTIVE To analyze the factors associated with a lack of prenatal care in a large municipality in southern Brazil. METHODS In this case-control age-matched study, 716 women were evaluated; of these, 179 did not receive prenatal care and 537 received prenatal care (controls). These women were identified using the Sistema Nacional de Informação sobre Nascidos Vivos (Live Birth Information System) of Pelotas, RS, Southern Brazil, between 2009 and 2010. Multivariate analysis was performed using conditional logistic regression to estimate the odds ratios (OR). RESULTS In the final model, the variables associated with a lack of prenatal care were the level of education, particularly when it was lesser than four years [OR 4.46; 95% confidence interval (CI) 1.92;10.36], being single (OR 3.61; 95%CI 1.85;7.04), and multiparity (OR 2.89; 95%CI 1.72;4.85). The prevalence of a lack of prenatal care among administrative regions varied between 0.7% and 3.9%. CONCLUSIONS The risk factors identified must be considered when planning actions for the inclusion of women in prenatal care by both the central management and healthcare teams. These indicated the municipal areas with greater deficits in prenatal care. The reorganization of the actions to identify women with risk factors in the community can be considered to be a starting point of this process. In addition, the integration of the activities of local programs that target the mother and child is essential to constantly identify pregnant women without prenatal care.