985 resultados para Kolmogorov-Smirnov
Resumo:
We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (|y(ee)|<1) in Au+Au collisions at √[s(NN)]=200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (ϕ-like) GeV/c(2). The spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.
Resumo:
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.
Resumo:
We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510 GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.
Resumo:
We present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at sqrt[s_{NN}]=200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider. The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for dihyperon searches are discussed.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at root(S)NN = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta = 1.37 +/- 0.02(stat)(-0.07)(+0.06)(syst), independent of p perpendicular to.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
We measure directed flow (v(1)) for charged particles in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p(t)), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v(1) in different collision systems, and investigate possible explanations for the observed sign change in v(1)(p(t)).
Resumo:
We report precision measurements of the Feynman x (x(F)) dependence, and first measurements of the transverse momentum (p(T)) dependence, of transverse single-spin asymmetries for the production of pi(0) mesons from polarized proton collisions at s=200 GeV. The x(F) dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p(T) dependence at fixed x(F) are not consistent with these same perturbative QCD-based calculations.
Resumo:
We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of root s = 200 GeV. The data, which cover jet transverse momenta 5 < p(T) < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K(S)(0) and A. In the relatively low PT region, P(T) <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
Resumo:
We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at s(NN)=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy s(NN)=17.3 GeV. The previous observations are for the bulk production, while at intermediate p(T),1 < p(T)< 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.