906 resultados para KAPPA-B ACTIVATION
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Osteoclastogenesis may be regulated via activation of the RANK/RANKL (receptor activator of nuclear factor-kappa B/ receptor activator of nuclear factor-kappa B ligand) system, which is mediated by osteoblasts. However, the bone loss mechanism induced by T3 (triiodothyronine) is still controversial. In this study, osteoblastic lineage rat cells (ROS 17/2.8) were treated with T3 (10(-8) M 10(-9) 10 M, and 10(-10) M), and RANKL mRNA (messenger RNA) expression was measured by semiquantitative RT-PCR. Our results show that T3 concentrations used did not significantly enhance RANKL expression compared to controls without hormone treatment. This data suggests that other mechanisms, unrelated to the RANK/RANKL system, might be to activate osteoclast differentiation in these cells.
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Inflammatory bowel diseases are characterized by a chronic clinical course of relapse and remission associated with self-destructive inflammation of the gastrointestinal tract. Active extracts from plants have emerged as natural potential candidates for its treatment. Abarema cochliacarpos (Gomes) Barneby & Grimes, Fabaceae (Barbatimão), is a native medicinal plant in to Brazil. Previously we have demonstrated in an acute colitis model a marked protective effect of a butanolic extract, so we decided to assess its anti-inflammatory effect in a chronic ulcerative colitis model induced by trinitrobenzensulfonic acid (TNBS). Abarema cochliacarpos (150 mg/day, v.o.) was administered for fourteen consecutive days. This treatment decreased significantly macroscopic damage as compared with TNBS. Histological analysis showed that the extract improved the microscopic structure. Myeloperoxidase activity (MPO) was significantly decreased. Study of cytokines showed that TNF-α was diminished and IL-10 level was increased after Abarema cochliacarpos treatment. In order to elucidate inflammatory mechanisms, expression of cyclooxygenase (COX)-2 and nitric oxide synthase (iNOS) were studied showing a significant downregulation. In addition, there was reduction in the JNK and p-38 activation. Finally, IκB degradation was blocked by Abarema cochliacarpos treatment being consistent with an up-regulation of the NF-kappaB-binding activity. These results reinforce the anti-inflammatory effects described previously suggesting that Abarema cochliacarpos could provide a source for the search for new anti-inflammatory compounds useful in ulcerative colitis treatment.
Resumo:
Interleukin-1 (IL-1) may be a mediator of β-cell damage in insulin-dependent diabetes mellitus (IDDM). The IL-1 mechanism of action on insulin-producing cells probably includes activation of the transcription nuclear factor κB (NF-κB), increased transcription of the inducible form of nitric oxide synthase (iNOS) and the subsequent production of nitric oxide (NO). Reactive oxygen intermediates, particularly H2O2, have been proposed as second messengers for NF-κB activation. In the present study, we tested whether ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a glutathione peroxidase mimicking compound, could counteract the effects of IL-1β, H2O2 and alloxan in rat pancreatic islets and in the rat insulinoma cell line RINm5F (RIN cells). Some of these experiments were also reproduced in human pancreatic islets. Ebselen (20 μM) prevented the increase in nitrite production by rat islets exposed to IL-1β for 6 hr and induced significant protection against the acute inhibitory effects of alloxan or H2O2 exposure, as judged by the preserved glucose oxidation rates. However, ebselen failed to prevent the increase in nitrite production and the decrease in glucose oxidation and insulin release by rat islets exposed to IL-1β for 24 hr. Ebselen prevented the increase in nitrite production by human islets exposed for 14 hr to a combination of cytokines (IL-1β, tumor necrosis factor-α and interferon-γ). In RIN cells, ebselen counteracted both the expression of iNOS mRNA and the increase in nitrite production induced by 6 hr exposure to IL-β but failed to block IL-1β-induced iNOS expression following 24 hr exposure to the cytokine. Moreover, ebselen did not prevent IL-1β-induced NF-κB activation. As a whole, these data indicate that ebselen partially counteracts cytokine-induced NOS activation in pancreatic β-cells, an effect not associated with inhibition of NF-κB activation.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: Local invasion of bone is a frequent complication of oral squamous cell carcinoma (OSCC). Development of these osteolytic lesions is mediated by osteoclasts. Receptor activation of NF-kappa B ligand (RANKL) signaling, counteracted by osteoprotegerin (OPG), regulates osteoclastogenesis. Previous studies in rodent models have demonstrated that inhibition of RANKL decreases tumor growth and lesions within bone. However, the contributory role of OSCC cells to this disease process has yet to be defined.Methods: RANKL expression was assessed in a panel of OSCC cell lines by qPCR, flow cytometry, and ELISA. Induction of osteoclastogenesis was assessed by co-culture with macrophages or with OSCC-derived conditioned medium. In an animal model of bone invasion, nude mice were injected intratibially with UMSCC-11B cells expressing a RANKL luciferase promoter to detect tumor-derived RANKL activity. Osteolytic lesions were analyzed by X-ray, micro-CT, and histological methods. RANKL expression was assessed in human OSCC tissues by immunohistochemistry.Results: We demonstrated that OSCCs express varied levels of all RANKL isoforms, both membrane-bound and soluble RANKL. Both co-culture and treatment with OSCC-conditioned media induced osteoclastogenesis. In mice, we demonstrated human RANKL promoter activity during bone invasion. Over the course of the experiment, animals suffered osteolytic lesions as RANKL-driven luciferase expression increased with time. After 8 weeks, human-derived RANKL was detected in areas of bone resorption by immunohistochemistry. Similar epithelial RANKL expression was detected in human OSCC tissues.Conclusion: These data demonstrate the ability of OSCCs to produce RANKL, directly altering the tumor microenvironment to increase osteoclastogenesis and mediate local bone invasion. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although melatonin is mainly produced by the pineal gland, an increasing number of extra-pineal sites of melatonin synthesis have been described. We previously demonstrated the existence of bidirectional communication between the pineal gland and the immune system that drives a switch in melatonin production from the pineal gland to peripheral organs during the mounting of an innate immune response. In the present study, we show that acute neuroinflammation induced by lipopolysaccharide (LPS) injected directly into the lateral ventricles of adult rats reduces the nocturnal peak of melatonin in the plasma and induces its synthesis in the cerebellum, though not in the cortex or hippocampus. This increase in cerebellar melatonin content requires the activation of nuclear factor kappa B (NF-κB), which positively regulates the expression of the key enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT). Interestingly, LPS treatment led to neuronal death in the hippocampus and cortex, but not in the cerebellum. This privileged protection of cerebellar cells was abrogated when G-protein-coupled melatonin receptors were blocked by the melatonin antagonist luzindole, suggesting that the local production of melatonin protects cerebellar neurons from LPS toxicity. This is the first demonstration of a switch between pineal and extra-pineal melatonin production in the central nervous system following a neuroinflammatory response. These results have direct implications concerning the differential susceptibility of specific brain areas to neuronal death.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)