953 resultados para John Chrysostom, Saint, d. 407.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
There is no better way to lean about tourism in China than from renowned expert in the field. Alan Lew. PhD. and professor at Northern Arizona University, Lawrence Yu, Ph.D. and associate professor in the Department of Tourism and Hospitality Management at George Washington University. John Ap, Ph.D. and associate professor in tourism management at Hong Kong Polytechnic University and Zhang Guangrui, director of the Tourism Research Centre, Chinese Academy of Social Sciences in Beijing, China, have contributed to and edited a collection of writings detailing the development of tourism in this fascinating and exotic land.
Resumo:
This research is about the cultural marks and meanings production on the popular culture context, in honor of Catholics Saints of June: Saint Antony; Saint John and Saint Peter (with celebrations in June 13th, 24th and 30th respectively). These marks are find on the newspapers’ photography of Tribuna do Norte (Natal, Rio Grande do Norte, Brazil) and Correio da Manhã (Lisbon, Portugal). All the photos were published in June 2012. The analysis has theory and methodology in Folkcommunication and in Sociocultural Photocatography. The investigation has focus in the meanings of these marks on the photojournalism about the popular parties and their practices. The study observes also a common view to report about popular culture, which has the influence of a hegemonic paradigm that considers itself the only true one.
Resumo:
Background: Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. Methods: A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. Results: We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. Conclusions: The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution.
Resumo:
In this report we have investigated the use of Ni foam substrates as anode current collectors for Li-ion batteries. As the majority of reports in the literature focus on hydrothermal formation of materials on Ni foam followed by a high temperature anneal/oxidation step, we probed the fundamental electrochemical responses of as received Ni foam substrates and those subjected to heating at 100°C, 300°C and 450°C. Through cyclic voltammetry and galvanostatic testing, it is shown that the as received and 100°C annealed Ni foam show negligible electrochemical activity. However, Ni foams heated to higher temperature showed substantial electrochemical contributions which may lead to inflated capacities and incorrect interpretations of CV responses for samples subjected to high temperature anneals. XRD, XPS and SEM analyses clearly illustrate that the formation of electrochemically active NiO nanoparticles on the surface of the foam is responsible for this behavior. To further investigate the contribution of the oxidized Ni foam to the overall electrochemical response, we formed Co3O4 nanoflowers directly on Ni foam at 450°C and showed that the resulting electrochemical response was dominated by NiO after the first 10 charge/discharge cycles. This report highlights the importance of assessing current collector activity for active materials grown on transition metal foam current collectors for Li-ion applications.
Resumo:
The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.
Resumo:
This Monograph on Deep-Sea Deposits forms the penultimate volume of the Official Reports on the Scientific Results of the Challenger Expedition. The work connected with the examination and study of the samples of Deep-Sea Deposits, and the preparation of this Report for the press have occupied a very large part of the author's time and attention for nearly twenty years, and his colleague, Professor A. F. Renard, has also given much of his time to the same studies during the past fourteen years. They hope that the completed work may be regarded as an interesting contribution to our knowledge of the ocean, and prove useful to a large number of scientific men, as it is the first attempt to deal systematically with Deep-Sea Deposits, and the Geology of the sea-bed throughout the whole extent of the ocean. There are three Appendices to the volume, the first containing an explanation of the Charts and Diagrams; the second a Report on the Analysis of Manganese Nodules, by John Gibson, Ph.D., of Edinburgh University; and the third Analyses of Deposits and materials from the Deposits by various analysts.
Resumo:
Transparent thin films can now be site-selectively patterned and positioned on surface using mask-defined electrodeposition of one oxide and overcoating with a different solution-processed oxide, followed by thermal annealing. Annealing allows an interdiffusion process to create a new oxide that is entirely transparent. A primary electrodeposited oxide can be patterned and the secondary oxide coated over the entire substrate to form high color contrast coplanar thin film tertiary oxide. The authors also detail the phase formation and chemical state of the oxide and how the nature of the electrodeposited layer and the overlayer influence the optical clearing of the patterned oxide film.