875 resultados para Intracellular Cholesterol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water solutions of representative (IC(4)mim][Cl] and [C(4)mim][Tf2N] room temperature ionic liquids (ILs) in contact with a neutral lipid bilayer made of cholesterol molecules has been investigated by molecular dynamics simulations based on an empirical force field model. The results show that both ILs display selective adsorption at the water-cholesterol interface, with partial inclusion of ions into the bilayer. In the case Of [C(4)mim][Cl], the adsorption of ions at the water-cholesterol interface is limited by a sizable bulk solubility of the IL, driven by the high water affinity of [Cl](-). The relatively low Solubility Of [C(4)mim][Tf2N], instead, gives rise to a nearly complete segregation of the IL component on the bilayer, altering its volume, compressibility, and electrostatic environment. The computational results display important similarities to the results of recent experimental measurements for ILs in contact with phospholipid model membranes (see Evans, K. O. Int. J. Mol. Sci. 2008, 9, 498-511 and references therein).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth sequence of gas-phase cholesterol clusters (Ch(N)) with up to N=36 molecules has been investigated by atomistic simulation based on an empirical force field model. The results of long annealings from high temperature show that the geometric motifs characterizing the structure of pure cholesterol crystals already appear in nanometric aggregates. In all clusters molecules tend to align along a common direction. For cluster sizes above the smallest ones, dispersion interactions among the hydrocarbon body and tails of cholesterol cooperate with hydrogen bonding to give rise to a bilayer structure. Analysis of snapshots from the annealing shows that the condensation of hydrogen bonds into a connected network of rings and chains is an important step in the self-organization of cholesterol clusters. The effect of solvation on the equilibrium properties of medium-size aggregates is investigated by short molecular dynamics simulations for the N=30 and N=40 clusters in water at near ambient conditions and in supercritical carbon dioxide at T=400 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.