968 resultados para Interdisciplinary approach to knowledge
Resumo:
Hogyan juthat az ember helyes döntésekig egy adott területre (mikroverzumra) vonatkozó mély, belsővé tett tudás birtokában anélkül, hogy következtetne? Az abduktivitás fogalmának körüljárása után öt hüvelykujjszabályt fogalmaz meg a szerző az abdukció működéséről, majd összekapcsolja azt a vezetői munkával, tudáskormányzási kontextusban. Ebből kiindulva a globális munkatérelmélet (Global Workspace Theory) alkalmazásával a vezetők vagy az organizmusként felfogott szervezetek abduktív kapacitásának fejlesztési lehetőségeit vizsgálja. Befejezésül egy hatlépéses, a szervezeti szintű abduktivitásra rákérdező speciális tudásaudit-módszertan rövid kifejtésére vállalkozik, két esettanulmány vázlatos bemutatásával. _____ How to make right decisions without any inferences, thanks to interiorized, deep knowledge on the given field (micro verse)? After defining the concept of abductivity, the author presents five thumbnail-like rules about the nature of abductivity, combining it with leadership aspects and knowledge governance approach. He introduces a method supporting the development of abductive capability of a leader or an organization as a whole, using the Global Works pace Theory. Finally, the author tries to briefly formulate six steps of an organization-level knowledge governance audit framework, illustrating its relevance with two short case studies.
Resumo:
Diet and physical activity patterns have been implicated as major factors in the increasing prevalence of childhood and adolescent obesity. It is estimated that between 16 and 33 percent of children and adolescents in the United States are overweight (CDC, 2000). Moreover, the CDC estimates that less than 50% of adolescents are physically active on a regular basis (CDC, 2003). Interventions must be focused to modify these behaviors. Facilitating the understanding of proper nutrition and need for physical activity among adolescents is the first step in preventing overweight and obesity and delaying the development of chronic diseases later in life (Dwyer, 2000). The purpose of this study was to compare the outcomes of students receiving one of two forms of education (both emphasizing diet and physical activity), to determine whether a computer based intervention (CBI) program using an interactive, animated CD-ROM would elicit a greater behavior change in comparison to a traditional didactic intervention (TDI) program. A convenience sample of 254 high school students aged 14-19 participated in the 6-month program. A pre-test post-test design was used, with follow-up measures taken at three months post-intervention. ^ No change was noted in total fat, saturated fat, fruit/vegetables, or fiber intake for any of the groups. There was also no change in perceived self-efficacy or perceived social support. Results did, however, indicate an increase in nutrition knowledge for both intervention groups (p<0.001). In addition, the CBI group demonstrated more positive and sustained behavior changes throughout the course of the study. These changes included a decrease in BMI (ppre/post<0.001, ppost/follow-up<0.001), number of meals skipped (ppre/post<0.001), and soda consumption (ppre/post=0.003, ppost/follow-up=0.03) and an increase in nutrition knowledge (ppre/post<0.001, ppre/follow-up <0.001), physical activity (ppre/post<0.05, p pre/follow-up<0.01), frequency of label reading (ppre/follow-up <0.0l) and in dairy consumption (ppre/post=0.03). The TDI group did show positive gains in some areas post intervention, however a return to baseline behavior was shown at follow-up. Findings of this study suggest that compared to traditional didactic teaching, computer-based nutrition and health education has greater potential to elicit change in knowledge and behavior as well as promote maintenance of the behavior change over time. ^
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown viruses quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives. ^
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
The purpose of this mixed methods study was to understand physics Learning Assistants' (LAs) views on reflective teaching, expertise in teaching, and LA program teaching experience and to determine if views predicted level of reflection evident in writing. Interviews were conducted in Phase One, Q methodology was used in Phase Two, and level of reflection in participants' writing was assessed using a rubric based on Hatton and Smith's (1995) "Criteria for the Recognition of Evidence for Different Types of Reflective Writing" in Phase Three. Interview analysis revealed varying perspectives on content knowledge, pedagogical knowledge, and experience in relation to expertise in teaching. Participants revealed that they engaged in reflection on their teaching, believed reflection helps teachers improve, and found peer reflection beneficial. Participants believed teaching experience in the LA program provided preparation for teaching, but that more preparation was needed to teach. Three typologies emerged in Phase Two. Type One LAs found participation in the LA program rewarding and believed expertise in teaching does not require expertise in content or pedagogy, but it develops over time from reflection. Type Two LAs valued reflection, but not writing reflections, felt the LA program teaching experience helped them decide on non-teaching careers and helped them confront gaps in their physics knowledge. Type Three LAs valued reflection, believed expertise in content and pedagogy are necessary for expert teaching, and felt LA program teaching experience increased their likelihood of becoming teachers, but did not prepare them for teaching. Writing assignments submitted in Phase Three were categorized as 19% descriptive writing, 60% descriptive reflections, and 21% dialogic reflections. No assignments were categorized as critical reflection. Using ordinal logistic regression, typologies that emerged in Phase Two were not found to be predictors for the level of reflection evident in the writing assignments. In conclusion, viewpoints of physics LAs were revealed, typologies among them were discovered, and their writing gave evidence of their ability to reflect on teaching. These findings may benefit faculty and staff in the LA program by helping them better understand the views of physics LAs and how to assess their various forms of reflection.
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown virus quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives.
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
Funding for this study was received from the Chief Scientist Office for Scotland. We would like to thank Asthma UK and Asthma UK Scotland for facilitating the advertisement of the study pilot and consultative user group. Thanks to Dr Mark Grindle for his helpful discussions concerning narrative. Thanks also to Mr Mark Haldane who designed the characters, backgrounds, and user interface used within the 3D computer animation. Particular thanks to the participants of the consultative user group for their enthusiasm, comments, and suggestions at all stages of the intervention design.
Resumo:
The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.
Resumo:
Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.
Resumo:
Purpose The aim of the study is to explore the role of confluent learning in supporting the development of change management knowledge, skills and attitudes and to inform the creation of a conceptual model based upon a priori and a posteriori knowledge gained from literature and the research. Design/methodology/approach The research adopts qualitative approach based on reflective inquiry methodology. There are two primary data sources, interviews with learners and the researchers’ reflective journals on learners’ opinions. Findings The confluent learning approach helped to stimulate affective states (e.g. interest and appreciation) to further reinforce cognitive gains (e.g. retention of knowledge) as a number of higher order thinking skills were further developed. The instructional design premised upon confluent learning enabled learners to further appreciate the complexities of change management. Research implications/ limitations The confluent learning approach offers another explanation to how learning takes place, contingent upon the use of a problem solving framework, instructional design and active learning in developing inter- and trans-disciplinary competencies. Practical implications This study not only explains how effective learning takes place but is also instructive to learning and teaching, and human resource development (HRD) professionals in curriculum design and the potential benefits of confluent learning. Social implications The adoption of a confluent learning approach helps to re-naturalise learning that appeals to learners affect. Originality/value This research is one of the few studies that provide an in-depth exploration of the use of confluent learning and how this approach co-develops cognitive abilities and affective capacity in the creation of a conceptual model.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Resumo:
This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.