947 resultados para Interagency Council on Meeting the Housing and Service Needs of Seniors (U.S.)
Resumo:
We report our studies of the linear and nonlinear rheology of aqueous solutions of the surfactant cetyl trimethylammonium tosylate (CTAT) with varying amounts of sodium chloride (NaCl). The CTAT concentration is fixed at 42 mM, and the salt concentration is varied between 0 and 120 mM. On increasing the salt (NaCl) concentration, we see three distinct regimes in the zero-shear viscosity and the high-frequency plateau modulus data. In regime 1, the zero-shear viscosity shows a weak increase with salt concentration due to enhanced micellar growth. The decrease in the zero-shear viscosities with salt concentration in regimes II and III can be explained in terms of intermicellar branching. The most intriguing feature of our data, however, is the anomalous behavior of the high-frequency plateau modulus in regime II (0.12 less than or equal to [NaCl]/[CTAT] less than or equal to 1.42). In this regime, the plateau modulus increases with an increase in NaCl concentration. This is highly interesting, since the correlation length of concentration fluctuations and hence the plateau modulus G(0) are not expected to change appreciably in the semidilute regime. We propose to explain the changes in regime II in terms of a possible unbinding of the organic counterions (tosylate) from the CTA(+) surfaces on the addition of NaCl. In the nonlinear flow curves of the samples with high salt content, significant deviations from the predictions of the Giesekus model for entangled micelles are observed.
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.
Resumo:
The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.
Resumo:
Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol-gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (epsilon' and epsilon aEuro(3)) and permeability (mu' and mu aEuro(3)) were measured over a wide frequency range from 1 MHz-1.8 GHz. The real part of permittivity varies as `x' concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tan delta). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of `x' increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (M-s) a parts per thousand aEuro parts per thousand 52.211 A.m(2)/Kg for x = 0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.
Resumo:
A series of ferrite samples with the compositional formula, Ni0.5Co0.5-xZnxFe2O4 (0 <= x <= 0.5), was prepared using the citrate based sol gel method for the better understanding of zinc doping on the structural and magnetic properties. The Rietveld-refined X-ray diffraction data revealed that the samples are having cubic structure with the Fd-3m space group. The lattice parameter increased linearly with increasing Zn content. The surface morphology and stoichiometric ratio of the compositional elements were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS). EDS showed that the elemental ratios were stoichiometric. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Zn concentration up to x=0.3 and a decrease thereafter. These results could be explained using Neel's collinear two-sub-lattice model and three-sub-lattice non-collinear model suggested by Yafet and Kittel. The magnetic cubic anisotropy constant determined by the law of approach to saturation decreased with increasing Zn content. The underlying mechanism behind observed behavior was discussed qualitatively. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Stoichiometric tin (II) sulfide (SnS) nano-structures were synthesized on SnS(010)/glass substrates using a simple and low-temperature chemical solution method, and their physical properties were investigated. The as-synthesized SnS nanostructures exhibited orthorhombic crystal structure and most of the nanocrystals are preferentially oriented along the <010> direction. These nanostructures showed p-type electrical conductivity and high electrical resistivity of 93 Omega cm. SnS nanostructures exhibited a direct optical band gap of 1.43 eV. While increasing the surrounding temperature from 20 to 150 degrees C, the electrical resistivity of the structures decreased and exhibited the activation energy of 0.28 eV.
Resumo:
First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The present investigation deals with grain boundary engineering of a modified austenitic stainless steel to obtain a material with enhanced properties. Three types of processing that are generally in agreement with the principles of grain boundary engineering were carried out. The parameters for each of the processing routes were fine-tuned and optimized. The as-processed samples were characterized for microstructure and texture. The influence of processing on properties was estimated by evaluating the room temperature mechanical properties through micro-tensile tests. It was possible to obtain remarkably high fractions of CSL boundaries in certain samples. The results of the micro-tensile tests indicate that the grain boundary engineered samples exhibited higher ductility than the conventionally processed samples. The investigation provides a detailed account of the approach to be adopted for GBE processing of this grade of steel. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Spirodiazaselenuranes are structurally interesting compounds and the stability of these compounds depends highly on the nature of the substituents attached to the nitrogen atoms. Aromatic substituents are known to play important roles in stabilizing the Se-N bonds in spiro compounds. In this study, several spirodiazaselenuranes are synthesized by introducing benzylic and aliphatic substituents to understand their effect on the stability of the Se-N bonds and the antioxidant activity. Replacement of phenyl substituent by benzyl/alkyl groups significantly reduces the stability of the spirodiazaselenuranes and slows down the oxidative cyclization process. The selenium centre in the spiro compounds undergoes further oxidation to produce the corresponding selenurane oxides, which are stable at room temperature. Comparison of the glutathione peroxidase (GPx) mimetic activity of the compounds showed that the diaryl selenides having heterocyclic rings are significantly more active due to the facile oxidation of the selenium centre. However, the activity is reduced significantly for compounds having aliphatic substituents. In addition to GPx activity, the compounds also inhibit peroxynitrite-mediated nitration and oxidation reaction of protein and small molecules, respectively. The experimental observations suggest that the antioxidant activity is increased considerably upon substitution of the aromatic group with the benzylic/aliphatic substituents on the nitrogen atoms.
Resumo:
Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.
Resumo:
Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm(-1) blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1(1)n pi* (band I) and 1(1)pi pi* (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm(-1)), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This will have implications for ultrafast processes associated with electron-transfer, charge transfer, and also the photophysical aspects of excited states. (C) 2016 AIP Publishing LLC.
Resumo:
Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.