893 resultados para Interactive visualizations
Resumo:
We investigated here the effects of S2T1-6OTD, a novel telomestatin derivative that is synthesized to target G-quadruplex-forming DNA sequences, on a representative panel of human medulloblastoma (MB) and atypical teratoid/rhabdoid (AT/RT) childhood brain cancer cell lines. S2T1-6OTD proved to be a potent c-Myc inhibitor through its high-affinity physical interaction with the G-quadruplex structure in the c-Myc promoter. Treatment with S2T1-6OTD reduced the mRNA and protein expressions of c-Myc and hTERT, which is transcriptionally regulated by c-Myc, and decreased the activities of both genes. In remarkable contrast to control cells, short-term (72-hour) treatment with S2T1-6OTD resulted in a dose- and time-dependent antiproliferative effect in all MB and AT/RT brain tumor cell lines tested (IC(50), 0.25-0.39 micromol/L). Under conditions where inhibition of both proliferation and c-Myc activity was observed, S2T1-6OTD treatment decreased the protein expression of the cell cycle activator cyclin-dependent kinase 2 and induced cell cycle arrest. Long-term treatment (5 weeks) with nontoxic concentrations of S2T1-6OTD resulted in a time-dependent (mainly c-Myc-dependent) telomere shortening. This was accompanied by cell growth arrest starting on day 28 followed by cell senescence and induction of apoptosis on day 35 in all of the five cell lines investigated. On in vivo animal testing, S2T1-6OTD may well represent a novel therapeutic strategy for childhood brain tumors.
Resumo:
To investigate the inhomogeneity of radiofrequency fields at higher field strengths that can interfere with established volumetric methods, in particular for the determination of visceral (VAT) and subcutaneous adipose tissue (SCAT). A versatile, interactive sparse sampling (VISS) method is proposed to determine VAT, SCAT, and also total body volume (TBV).
Resumo:
Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are the most frequent conditions leading to elevated liver enzymes and liver cirrhosis, respectively, in the Western world. However, despite strong epidemiological evidence for combined effects on the progression of liver injury, the mutual interaction of the pathophysiological mechanisms is incompletely understood. The aim of this study was to establish and analyze an experimental murine model, where we combined chronic alcohol administration with a NASH-inducing high-fat (HF) diet.
Resumo:
The challenges posed by global climate change are motivating the investigation of strategies that can reduce the life cycle greenhouse gas (GHG) emissions of products and processes. While new construction materials and technologies have received significant attention, there has been limited emphasis on understanding how construction processes can be best managed to reduce GHG emissions. Unexpected disruptive events tend to adversely impact construction costs and delay project completion. They also tend to increase project GHG emissions. The objective of this paper is to investigate ways in which project GHG emissions can be reduced by appropriate management of disruptive events. First, an empirical analysis of construction data from a specific highway construction project is used to illustrate the impact of unexpected schedule delays in increasing project GHG emissions. Next, a simulation based methodology is described to assess the effectiveness of alternative project management strategies in reducing GHG emissions. The contribution of this paper is that it explicitly considers projects emissions, in addition to cost and project duration, in developing project management strategies. Practical application of the method discussed in this paper will help construction firms reduce their project emissions through strategic project management, and without significant investment in new technology. In effect, this paper lays the foundation for best practices in construction management that will optimize project cost and duration, while minimizing GHG emissions.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
Description of simulation and training games as tool for awareness and capacity development in multi steakeholder processes