945 resultados para Intelligent Tutoring Systems
Resumo:
An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation.
Resumo:
Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
Transport climate change impacts have become a worldwide concern. The use of Intelligent Transport Systems (ITS) could contribute to a more effective use of resources in toll road networks. Management of toll plazas is central to the reduction of greenhouse gas (GHG) emissions, as it is there that bottlenecks and congestion occur. This study focuses on management strategies aimed at reducing climate change impacts of toll plazas by managing toll collection systems. These strategies are based on the use of different collection system technologies – Electronic Toll Collection (ETC) and Open Road Tolling (ORT) – and on queue management. The carbon footprint of various toll plazas is determined by a proposed integrated methodology which estimates the carbon dioxide (CO2) emissions of the different operational stages at toll plazas (deceleration, service time, acceleration, and queuing) for the different toll collection systems. To validate the methodology, two main-line toll plazas of a Spanish toll highway were evaluated. The findings reveal that the application of new technologies to toll collection systems is an effective management strategy from an environmental point of view. The case studies revealed that ORT systems lead to savings of up to 70% of CO2 emissions at toll plazas, while ETC systems save 20% comparing to the manual ones. Furthermore, queue management can offer a 16% emissions savings when queue time is reduced by 116 seconds. The integrated methodology provides an efficient environmental management tool for toll plazas. The use of new technologies is the future of the decarbonization of toll plazas.
Resumo:
Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.
Resumo:
Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.
Resumo:
This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.
Resumo:
In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.
Resumo:
This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.
Resumo:
This document presents theimplementation ofa Student Behavior Predictor Viewer(SBPV)for a student predictive model. The student predictive model is part of an intelligent tutoring system, and is built from logs of students’ behaviors in the “Virtual Laboratory of Agroforestry Biotechnology”implemented in a previous work.The SBPVis a tool for visualizing a 2D graphical representationof the extended automaton associated with any of the clusters ofthe student predictive model. Apart from visualizing the extended automaton, the SBPV supports the navigation across the automaton by means of desktop devices. More precisely, the SBPV allows user to move through the automaton, to zoom in/out the graphic or to locate a given state. In addition, the SBPV also allows user to modify the default layout of the automaton on the screen by changing the position of the states by means of the mouse. To developthe SBPV, a web applicationwas designedand implementedrelying on HTML5, JavaScript and C#.
Resumo:
With the continuous development in the fields of sensors, advanced data processing and communications, road transport oriented intelligent applications and services have reached a significant maturity and complexity. Cooperative ITS services, based on the idea of sharing accurate information among road entities, are currently being tested on a large scale by different initiatives. The field operational test (FOTsis) project contributes to the deployment environment with services that involve a significant number of entities out of the vehicle. This made necessary the specification of an architecture which, based on the ISO ITS station reference architecture for communications, could support the requirements of the services proposed in the project. During the project, internal implementation tests and external interoperability tests have resulted in the validation of the proposed architecture. At the same time, these tests have had as a result the awareness of areas in which the FOTsis architecture could be completed, mainly to take full advantage of all the emerging and foreseeable data sources which may be relevant in the road environment. In this study, the authors will outline an approach that, based on the current cooperative ITS architecture and the SmartCities and Internet Of Things (IoT) architectures, can provide a common convergence platform to maximise the information available for ITS purposes.
Resumo:
Este trabajo se enmarca dentro del ámbito de las Ciudades Inteligentes. Una Ciudad Inteligente se puede definir como aquella ciudad que usa las tecnologías de la información y las comunicaciones para hacer que tanto su infraestructura crítica, como sus componentes y servicios públicos ofrecidos sean más interactivos, eficientes y los ciudadanos puedan ser más conscientes de ellos. Se trata de un concepto emergente que presenta una serie de retos de diseño que se deben abordar. Dos retos importantes son la variabilidad del contexto con el tiempo y la incertidumbre en la información del contexto. Una parte fundamental de estos sistemas, y que permite abordar estos retos, son los mecanismos de toma de decisión. Estos mecanismos permiten a los sistemas modificar su comportamiento en función de los cambios que detecten en su contexto, de manera que puedan adaptarse y responder adecuadamente a la situación en cada momento. Este trabajo tiene como objetivo el desarrollo de algoritmos de toma de decisión en el marco de las Ciudades Inteligentes. En particular, se ha diseñado e implementado, utilizando el software MATLAB, un algoritmo de toma de decisión que aborda los retos mencionados y que se puede aplicar en una de las áreas que engloban las Ciudades Inteligentes: los Sistemas Inteligentes de Transporte. Este proyecto se estructura fundamentalmente en dos partes: una parte teórica y una parte práctica. En la parte teórica se trata de proporcionar al lector nociones básicas sobre los conceptos de Ciudad Inteligente y Sistemas Inteligentes de Transporte, así como de la toma de decisión. También se explican los pasos del procedimiento de la toma de decisión y se proporciona un estado del arte de los algoritmos de toma de decisión existentes. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor propone un algoritmo de toma de decisión para ser aplicado en el ámbito de los Sistemas Inteligentes de Transporte y desarrolla la implementación en MATLAB del algoritmo mencionado. Por último, para demostrar su funcionamiento, se valida el algoritmo en un escenario de aplicación consistente en un sistema inteligente de gestión del tráfico. ABSTRACT. This master thesis is framed under Smart Cities environment. A Smart City can be defined as the use of Information and Communication Technologies to make the critical infrastructure components and services of a city more intelligent, interconnected and efficient and citizens can be also more aware of them. Smart City is a new concept which presents a novel set of design challenges that must be addressed. Two important challenges are the changeable context and the uncertainty of context information. One of the essential parts of Smart Cities, which enables to address these challenges, are decision making mechanisms. Based on the information collected of the context, these systems can be configured to change its behavior whenever certain changes are detected, so that they can adapt themselves and response to the current situation properly. This master thesis is aimed at developing decision making algorithms under Smart Cities framework. In particular, a decision making algorithm which addresses the abovementioned challenges and that can be applied to one of the main categories of Smart Cities, named Intelligent Transportation Systems, has been designed and implemented. To do so, MATLAB software has been used. This project is mainly structured in two parts: a theoretical part and a practical part. In theoretical part, basic ideas about the concept of Smart Cities and Intelligent Transportation Systems are given, as well as the concept of decision making. The steps of the decision making procedure are also explained and a state of the art of existing decision making algorithms is provided. On the other hand, the second part of this project is totally original. In this part, the author propose a decision making algorithm that can be applied to Intelligent Transportation Systems and develops the implementation of the algorithm in MATLAB. Finally, to show the operation of the algorithm, it is validated in an application scenario consisting in a smart traffic management system.
Resumo:
El presente Trabajo de Fin de Grado se enmarca dentro de un sistema de control y desarrollo de sistemas inteligentes de transporte (ITS). Este Trabajo consta de varias líneas de desarrollo, que se engloban dentro de dicho marco y surgen de la necesidad de aumentar la seguridad, flujo, estructura y mantenimiento de las carreteras incorporando las tecnologías más recientes. En primer lugar, el presente Trabajo se centra en el desarrollo de un nuevo sistema de procesamiento de datos de tráfico en tiempo real que aprovecha las tecnologías de Big Data, Cloud Computing y Map-Reduce que han surgido estos últimos años. Para ello se realiza un estudio previo de los datos de tráfico vial que originan los vehículos que viajan por carreteras. Centrándose en el sistema empleado por la Dirección General de Tráfico de España y comparándolos con el de las Empresas basadas en servicios de localización (LBS). Se expone el modelo Hadoop utilizado así como el proceso Map-Reduce implementado en este sistema analizador. Por último los datos de salida son preparados y enviados a un módulo web básico que actúa como Sistema de Información Geográfica (GIS).---ABSTRACT---This Final Degree Project is part of a control system and development of intelligent transport systems (ITS). This work is part of a several lines of development, which are included within this framework and arise from the need to increase security, flow, structure and maintenance of roads incorporating the latest technologies. First, this paper focuses on the development of a new data processing system of real-time traffic that takes advantage of Big Data, Cloud Computing and Map-Reduce technologies emerged in our recent years. It is made a preliminary study of road traffic data originated by vehicles traveling by road. Focusing on the system used by the Dirección General de Tráfico of Spain and compared with that of the companies offering location based services (LBS). It is exposed the used Hadoop model and the Map-Reduce process implemented on this analyzer system. Finally, the output data is prepared and sent to a basic web module that acts as Geographic Information System (GIS).
Resumo:
Este documento presenta las mejoras y las extensiones introducidas en la herramienta de visualización del modelo predictivo del comportamiento del estudiante o Student Behavior Predictor Viewer (SBPV), implementada en un trabajo anterior. El modelo predictivo del comportamiento del estudiante es parte de un sistema inteligente de tutoría, y se construye a partir de los registros de actividad de los estudiantes en un laboratorio virtual 3D, como el Laboratorio Virtual de Biotecnología Agroforestal, implementado en un trabajo anterior, y cuyos registros de actividad de los estudiantes se han utilizado para validar este trabajo fin de grado. El SBPV es una herramienta para visualizar una representación gráfica 2D del grafo extendido asociado con cualquiera de los clusters del modelo predictivo del estudiante. Además de la visualización del grafo extendido, el SBPV controla la navegación a través del grafo por medio del navegador web. Más concretamente, el SBPV permite al usuario moverse a través del grafo, ampliar o reducir el zoom del gráfico o buscar un determinado estado. Además, el SBPV también permite al usuario modificar el diseño predeterminado del grafo en la pantalla al cambiar la posición de los estados con el ratón. Como parte de este trabajo fin de grado, se han corregido errores existentes en la versión anterior y se han introducido una serie de mejoras en el rendimiento y la usabilidad. En este sentido, se han implementado nuevas funcionalidades, tales como la visualización del modelo de comportamiento de cada estudiante individualmente o la posibilidad de elegir el método de clustering para crear el modelo predictivo del estudiante; así como ha sido necesario rediseñar la interfaz de usuario cambiando el tipo de estructuras gráficas con que se muestran los elementos del modelo y mejorando la visualización del grafo al interaccionar el usuario con él. Todas estas mejoras se explican detenidamente en el presente documento.---ABSTRACT---This document presents the improvements and extensions made to the visualization tool Student Behavior Predictor Viewer (SBPV), implemented in a previous job. The student behavior predictive model is part of an intelligent tutoring system, and is built from the records of students activity in a 3D virtual laboratory, like the “Virtual Laboratory of Agroforestry Biotechnology” implemented in a previous work, and whose records of students activity have been used to validate this final degree work. The SBPV is a tool for visualizing a 2D graphical representation of the extended graph associated with any of the clusters of the student predictive model. Apart from visualizing the extended graph, the SBPV supports the navigation across the graph by means of desktop devices. More precisely, the SBPV allows user to move through the graph, to zoom in/out the graphic or to locate a given state. In addition, the SBPV also allows user to modify the default layout of the graph on the screen by changing the position of the states by means of the mouse. As part of this work, some bugs of the previous version have been fixed and some enhancements have been implemented to improve the performance and the usability. In this sense, we have implemented new features, such as the display of the model behavior of only one student or the possibility of selecting the clustering method to create the student predictive model; as well as it was necessary to redesign the user interface changing the type of graphic structures that show model elements and improving the rendering of the graph when the user interacts with it. All these improvements are explained in detail in the next sections.