925 resultados para Inner Cell Mass
Resumo:
Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function.
Resumo:
Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.
Resumo:
Man-made desert algal crusts were constructed on a large scale (3000m(2)) in Inner Mongolia, China. Microcoleus vaginatus was mass cultivated and inoculated directly onto unconsolidated sand dune and irrigated by automatic sprinkling micro-irrigation facilities. The crusts were formed in a short time and could resist the erosion of winds and rainfalls 22 days after inoculation. The maximum biomass in the man-made algal crusts could also reach 35 mu g Chl a/cm(2) of soil. Effects of environmental factors such as temperature, irrigation, rainfall and soil nutrients on algal biomass of man-made algal crusts were also studied. It was found that rainfalls and lower light intensity had significantly positive effects on the biomass of man-made algal crusts. The preliminary results suggested that man-made algal crusts could be formed rapidly, and thus it might be a new feasible alternative method for fixing unconsolidated sand. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
An energy conversion efficiency of 35% was obtained at 1-sun, air mass 1.5 for a novel silicon cell having an area of 2.3 X 2.3 mm2 . cell. The critical feature of the cell structure is the inclusion of local defect layers near a p-n junction. The local defect layers were proven to hold the key to achieving the exceptionally high efficiency of the novel cell fabricated via noncomplex processing.
Resumo:
Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH4HF2. The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50degreesC, even 20 fmol cytochrome c could be well digested and detected.
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS) 2, with a high molar extinction coefficient of 20.5 x 10(3) M-1 cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global ( AM 1.5G) full sunlight.
Resumo:
Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media has been investigated by a constant interfacial cell with laminar flow. Studies of interfacial tension and effects of the stirring rate, temperature, and specific interfacial area on mass transfer rate show that the most probable reaction zone takes place at the liquid-liquid interface. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the rate equation of extracting thorium has been obtained as follows: -d[Th(IV)]((o))/dt = 10(-3.10)center dot[Th(IV)](0.89)center dot[(RNH3)(2)SO4](0.74).
Resumo:
Na+-K+ ATPases have been observed and located by in situ AFM and single molecule recognition technique, topography and recognition imaging (TREC) that is a unique technique to specifically identify single protein in complex during AFM imaging. Na+-K+ ATPases were well distributed in the inner leaflet of cell membranes with about 10% aggregations in total recognized proteins. The height of Na+-K+ ATPases measured by AFM is in the range of 12-14 nm, which is very consistent with the cryoelectron microscopy result. The unbinding force between Na+-K+ ATPases in the membrane and anti-ATPases on the AFM tip is about 80 pN with the apparent loading rate at 40 nN/s.
Resumo:
BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.
Resumo:
The extraction and stripping kinetics of yttrium(III) with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane as an acid extractant have been investigated by constant interfacial cell with laminar flow. The experimental hydrodynamic conditions have been chosen so that the contribution of diffusion to the measured rate of reaction is minimized. The plot of interfacial area on the rate has shown a linear relationship, which makes the interface the most probable local for the chemical reactions. At the same time, the extraction thermodynamic and kinetic methods are compared to determine the equilibrium extraction constant. A rate equation and the rate-determining step of the extraction and stripping of yttrium(III) have also been obtained, respectively.
Resumo:
Studies have been made on the kinetics of ytterbium(III) with bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272, HA) in n-heptane using a constant interfacial cell with laminar flow. The stiochiometry and the equilibrium constant of the extracted complex formation reaction between Yb3+ and Cyanex 272 are determined. The extraction rate is dependent of the stirring rate. This fact together with the Ea value suggests that the mass transfer process is a mixed chemical reaction-diffusion controlled at lower temperature, whereas it is entirely diffusion controlled at higher temperature. The rate equations for the ytterbium extraction with Cyanex 272 have been obtained. The rate-determining step is also made by predictions derived from interfacial reaction models, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
The extraction kinetics of ytterbium with sec-nonylphenoxy acetic acid (CA-100) in heptane have been investigated using a constant interfacial area cell with laminar flow. The influence of stirring speed and temperature on the rate indicated that the extraction rate was controlled by the experiment conditions. The plot of interfacial area on the rate showed a linear relationship. This fact together with the low solubility in water and strong surface activity of CA-100 at heptane-water interfaces made the interface the most probable locale for the chemical reactions. The influences of extractant concentration and hydrogen ion concentration on the extraction rate were investigated, and the forward and reverse rate equations for the ytterbium extraction with CA-100 were also obtained. Based on the experimental data, the apparent forward extraction rate constant was calculated. Interfacial reaction models were proposed that agree well with the rate equations obtained from experimental data.