956 resultados para Infinite.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of binary hydrocarbon mixtures involving methane in carbon slit pores is theoretically studied here from the viewpoints of separation and of the effect of impurities on methane storage. It is seen that even small amounts of ethane, propane, or butane can significantly reduce the methane capacity of carbons. Optimal pore sizes and pressures, depending on impurity concentration, are noted in the present work, suggesting that careful adsorbent and process design can lead to enhanced separation. These results are consistent with earlier literature studies for the infinite dilution limit. For methane storage applications a carbon micropore width of 11.4 Angstrom (based on distance between centers of carbon atoms on opposing walls) is found to be the most suitable from the point of view of lower impurity uptake during high-pressure adsorption and greater impurity retention during low-pressure delivery. The results also theoretically confirm unusual recently reported observations of enhanced methane adsorption in the presence of a small amount of heavier hydrocarbon impurity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are fur infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bendix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.