979 resultados para Infertemporal and rhinal cortex
Resumo:
Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.
Resumo:
BACKGROUND: Studies were carried out to test the hypothesis that administration of a glucocorticoid Type II receptor antagonist, mifepristone (RU38486), just prior to withdrawal from chronic alcohol treatment, would prevent the consequences of the alcohol consumption and withdrawal in mice. MATERIALS AND METHODS: The effects of administration of a single intraperitoneal dose of mifepristone were examined on alcohol withdrawal hyperexcitability. Memory deficits during the abstinence phase were measured using repeat exposure to the elevated plus maze, the object recognition test, and the odor habituation/discrimination test. Neurotoxicity in the hippocampus and prefrontal cortex was examined using NeuN staining. RESULTS: Mifepristone reduced, though did not prevent, the behavioral hyperexcitability seen in TO strain mice during the acute phase of alcohol withdrawal (4 hours to 8 hours after cessation of alcohol consumption) following chronic alcohol treatment via liquid diet. There were no alterations in anxiety-related behavior in these mice at 1 week into withdrawal, as measured using the elevated plus maze. However, changes in behavior during a second exposure to the elevated plus maze 1 week later were significantly reduced by the administration of mifepristone prior to withdrawal, indicating a reduction in the memory deficits caused by the chronic alcohol treatment and withdrawal. The object recognition test and the odor habituation and discrimination test were then used to measure memory deficits in more detail, at between 1 and 2 weeks after alcohol withdrawal in C57/BL10 strain mice given alcohol chronically via the drinking fluid. A single dose of mifepristone given at the time of alcohol withdrawal significantly reduced the memory deficits in both tests. NeuN staining showed no evidence of neuronal loss in either prefrontal cortex or hippocampus after withdrawal from chronic alcohol treatment. CONCLUSIONS: The results suggest mifepristone may be of value in the treatment of alcoholics to reduce their cognitive deficits.
Resumo:
Concentrations of corticosterone in brain areas of TO strain mice were measured by radioimmunoassay. The studies examined the effects of routine laboratory maneuvers, variation during the circadian peak, adrenalectomy, social defeat and acute injections of alcohol on these concentrations. Brief handling of mice increased corticosterone levels in plasma but not in striatum and reduced those in the hippocampus. Single injections of isotonic saline raised the plasma concentrations to a similar extent as the handling, but markedly elevated concentrations in the three brain regions. Five minutes exposure to a novel environment increased hippocampal and cerebral cortical corticosterone levels and striatal concentrations showed a larger rise. However, by 30 min in the novel environment, plasma concentrations rose further while those in striatum and cerebral cortex fell to control levels and hippocampal corticosterone remained elevated. Over the period of the circadian peak the hippocampal and striatal concentrations paralleled the plasma concentrations but cerebral cortical concentrations showed only small changes. Adrenalectomy reduced plasma corticosterone concentrations to below detectable levels after 48 h but corticosterone levels were only partially reduced in the hippocampus and striatum and remained unchanged in the cerebral cortex. Single or repeated social defeat increased both brain and plasma concentrations after 1 h. Acute injections of alcohol raised the regional brain levels in parallel with plasma concentrations. The results show that measurements of plasma concentrations do not necessarily reflect the levels in brain. The data also demonstrate that corticosterone levels can change differentially in specific brain regions. These results, and the residual hormone seen in the brain after adrenalectomy, are suggestive evidence for a local origin of central corticosterone.
Resumo:
Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.
Resumo:
Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1h, but not 6h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition.
Resumo:
Einleitung Die Annahme, dass Sport nicht nur positive Effekte auf die körperliche Gesundheit, sondern auch auf die kognitive Leistung haben kann, konnte anhand experimenteller Studien mit Erwachsenen weitgehend bestätigt werden. Ob dieselben Effekte auch bei Kindern und Jugendlichen vorzufinden sind, kann mit Blick auf die mangelnde empirische Evidenz in dieser Altersgruppe kaum zufriedenstellend beantwortet werden (Chang et al., 2012). Will man zudem der Frage nach den Wirkmechanismen nachgehen, sind Unter-suchungsdesigns angezeigt, die theoriegeleitet verschiedene Sportinterventionen mit unterschiedlichen Beanspruchungsmodalitäten kombinieren. So ist unter der Annahme der cardiovascular fitness hypothesis (Etnier et al., 2006) zur gezielten Förderung der kognitiven Leistungsfähigkeit ein systematisches Ausdauertraining sinnvoll, während theoretische Ansätze, die neurophysiologische Korrelate zur Erklärung des Zusammenhangs zwischen Sport und Kognition heranziehen (Diamond, 2000) eher kognitiv sowie koordinativ anspruchsvolle Sportangebote nahelegen würden. Daher geht der vorliegende Beitrag der Frage nach, ob spezifisch konzipierte langfristige Interventionen im Sportunterricht einen spezifischen Effekt auf die kognitive Leistungsfähigkeit von Primarschulkindern haben können. Methode Im Rahmen der quasiexperimentellen Längsschnittstudie „Sport und Kognition“ (SpuK_5.0) wurden insgesamt 250 Schülerinnen und Schüler von 16 fünften Klassen untersucht. Während knapp zwei Monaten absolvierten je vier Klassen während zwei Lektionen des obligatorischen Sportunterrichts entweder ein spielsportbezogenes EF-Training oder ein Ausdauertraining resp. ein kognitives oder kein spezifisches Training (Kontrollgruppe mit regulärem Sportunterricht). Durch die Konzeption dieser vier Experi-mentalbedingungen wurde sichergestellt, dass alle vier möglichen Kombinationen aus hoher resp. niedriger kognitiver und körperlicher Beanspruchung im Design repräsentiert waren. Ergebnisse und Diskussion Im Beitrag werden erste Ergebnisse der noch laufendenden SpuK_5.0-Studie vorgestellt und vor dem Hintergrund aktueller theoretischer Annahmen zu den zugrundeliegenden Wirkmechanismen diskutiert. Literatur Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cere-bellum and prefrontal cortex. Child Development, 71, 44-56. Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the rela-tionship between aerobic fitness and cognitive performance. BRAIN RESEARCH, 52, 119-130.
Resumo:
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K-m = 0.1-0.3 mM), lower for Pro (K-m = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K-m = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.
Resumo:
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.
Resumo:
Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450 - 650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis (LORETA) suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas.
Resumo:
Daily we cope with upcoming potentially disadvantageous events. Therefore, it makes sense to be prepared for the worst case. Such a 'pessimistic' bias is reflected in brain activation during emotion processing. Healthy individuals underwent functional neuroimaging while viewing emotional stimuli that were earlier cued ambiguously or unambiguously concerning their emotional valence. Presentation of ambiguously announced pleasant pictures compared with unambiguously announced pleasant pictures resulted in increased activity in the ventrolateral prefrontal, premotor and temporal cortex, and in the caudate nucleus. This was not the case for the respective negative conditions. This indicates that pleasant stimuli after ambiguous cueing provided 'unexpected' emotional input, resulting in the adaptation of brain activity. It strengthens the hypothesis of a 'pessimistic' bias of brain activation toward ambiguous emotional events.
Resumo:
Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.
An unusual stroke-like clinical presentation of Creutzfeldt-Jakob disease: acute vestibular syndrome
Resumo:
INTRODUCTION Vertigo and dizziness are common neurological symptoms in general practice. Most patients have benign peripheral vestibular disorders, but some have dangerous central causes. Recent research has shown that bedside oculomotor examinations accurately discriminate central from peripheral lesions in those with new, acute, continuous vertigo/dizziness with nausea/vomiting, gait unsteadiness, and nystagmus, known as the acute vestibular syndrome. CASE REPORT A 56-year-old man presented to the emergency department with acute vestibular syndrome for 1 week. The patient had no focal neurological symptoms or signs. The presence of direction-fixed, horizontal nystagmus suppressed by visual fixation without vertical ocular misalignment (skew deviation) was consistent with an acute peripheral vestibulopathy, but bilaterally normal vestibuloocular reflexes, confirmed by quantitative horizontal head impulse testing, strongly indicated a central localization. Because of a long delay in care, the patient left the emergency department without treatment. He returned 1 week later with progressive gait disturbance, limb ataxia, myoclonus, and new cognitive deficits. His subsequent course included a rapid neurological decline culminating in home hospice placement and death within 1 month. Magnetic resonance imaging revealed restricted diffusion involving the basal ganglia and cerebral cortex. Spinal fluid 14-3-3 protein was elevated. The rapidly progressive clinical course with dementia, ataxia, and myoclonus plus corroborative neuroimaging and spinal fluid findings confirmed a clinicoradiographic diagnosis of Creutzfeldt-Jacob disease. CONCLUSIONS To our knowledge, this is the first report of an initial presentation of Creutzfeldt-Jacob disease closely mimicking vestibular neuritis, expanding the known clinical spectrum of prion disease presentations. Despite the initial absence of neurological signs, the central lesion location was differentiated from a benign peripheral vestibulopathy at the first visit using simple bedside vestibular tests. Familiarity with these tests could help providers prevent initial misdiagnosis of important central disorders in patients presenting vertigo or dizziness.
Resumo:
Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.
Resumo:
The murine ZnT3 gene was cloned by virtue of its homology to the ZnT2 gene, which encodes a membrane protein that facilitates sequestration of zinc in endosomal vesicles. ZnT-3 protein is predicted to have six transmembrane domains and shares 52% amino acid identity with ZnT-2, with the homology extending throughout the two sequences. Human ZnT-3 cDNAs were also cloned; the amino acid sequence is 86% identical to murine ZnT-3. The mouse ZnT3 gene has 8 exons and maps to chromosome 5. Northern blot and reverse transcriptase–PCR analyses demonstrate that murine ZnT-3 expression is restricted to the brain and testis. In situ hybridization reveals that within the brain, ZnT-3 mRNA is most abundant in the hippocampus and cerebral cortex. Antibodies raised against the C-terminal tail of mouse ZnT-3 react with the projections from these neurons and produce a pattern similar to that obtained with Timm’s reaction, which reveals histochemically reactive zinc within synaptic vesicles. We propose that ZnT-3 facilitates the accumulation of zinc in synaptic vesicles.