312 resultados para Infarct
Resumo:
Infarct size (IS) increases with vascular occlusion time, area at risk for infarction, lack of collateral supply, absence of preconditioning, and myocardial demand for O2 supply. ECG S-T segment elevation is used as a measure of severity of ischemia and a surrogate for IS. This study in 50 patients with coronary artery disease undergoing a first 120-s balloon occlusion of a stenosis sought to determine whether S-T segment elevation, corrected for the above-mentioned variables, in the left coronary artery (LCA group, n = 36) is different from that in the right coronary artery (RCA group, n = 14) territory. After consideration of all known determinants of IS, particularly mass at risk and collateral supply, the LCA territory is more sensitive than the RCA region to a 2-min period of myocardial ischemia.
Resumo:
Focal ectopic activity in cardiac tissue is a key factor in the initiation and perpetuation of tachyarrhythmias. Because myofibroblasts as present in fibrotic remodeled myocardia and infarct scars depolarize cardiomyocytes by heterocellular electrotonic interactions via gap junctions in vitro, we investigated using strands of cultured ventricular cardiomyocytes coated with myofibroblasts, whether this interaction might give rise to depolarization-induced abnormal automaticity. Whereas uncoated cardiomyocyte strands were invariably quiescent, myofibroblasts induced synchronized spontaneous activity in a density dependent manner. Activations appeared at spatial myofibroblast densities >15.7% and involved more than 80% of the preparations at myofibroblast densities of 50%. Spontaneous activity was based on depolarization-induced automaticity as evidenced by: (1) suppression of activity by the sarcolemmal K(ATP) channel opener P-1075; (2) induction of activity in current-clamped single cardiomyocytes undergoing depolarization to potentials similar to those induced by myofibroblasts in cardiomyocyte strands; and (3) induction of spontaneous activity in cardiomyocyte strands coated with connexin 43 transfected Hela cells but not with communication deficient HeLa wild-type cells. Apart from unveiling the mechanism underlying the hallmark of monolayer cultures of cardiomyocytes, ie, spontaneous electromechanical activity, these findings open the perspective that myofibroblasts present in structurally remodeled myocardia following pressure overload and infarction might contribute to arrhythmogenesis by induction of ectopic activity.
Resumo:
Some studies of patients with acute myocardial infarction have reported that hyperglycaemia at admission may be associated with a worse outcome. This study sought to evaluate the association of blood glucose at admission with the outcome of unselected patients with acute coronary syndrome (ACS). Using the Acute Myocardial Infarction and unstable angina in Switzerland (AMIS Plus) registry, ACS patients were stratified according to their blood glucose on admission: group 1: 2.80-6.99 mmol/L, group 2: 7.00-11.09 mmol/L and group 3: > 11.10 mmol/L. Odds ratios for in-hospital mortality were calculated using logistic regression models. Of 2,786 patients, 73% were male and 21% were known to have diabetes. In-hospital mortality increased from 3% in group 1 to 7% in group 2 and to 15% in group 3. Higher glucose levels were associated with larger enzymatic infarct sizes (p<0.001) and had a weak negative correlation with angiographic or echographic left ventricular ejection fraction. High admission glycaemia in ACS patients remains a significant independent predictor of in-hospital mortality (adjusted OR 1.08; 95% confidence intervals [CI] 1.05-1.14, p<0.001) per mmol/L. The OR for in-hospital mortality was 1.04 (95% CI 0.99-1.1; p=0.140) per mmol/L for patients with diabetes but 1.21 (95% CI 112-1.30; p<0.001) per mmol/L for non-diabetic patients. In conclusion, elevated glucose level in ACS patients on admission is a significant independent predictor of in-hospital mortality and is even more important for patients who do not have known diabetes.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
BACKGROUND: Recanalization of the culprit lesion is the main goal of primary angioplasty for acute ST-segment elevation myocardial infarction (STEMI). Patients presenting with acute myocardial infarction and multivessel disease are, therefore, usually subjected to staged procedures, with the primary percutaneous coronary intervention (PCI) confined to recanalization of the infarct-related artery (IRA). Theoretically at least, early relief of stenoses of non-infarct-related arteries could promote collateral circulation, which could help to limit the infarct size. However, the safety and feasibility of such an approach has not been adequately established. METHODS: In this single-center prospective study we examined 73 consecutive patients who had an acute STEMI and at least one or more lesions > or = 70% in a major epicardial vessel other than the infarct-related artery. In the first 28 patients, forming the multi-vessel (MV) PCI group, all lesions were treated during the primary procedure. In the following 45 patients, forming the culprit-only (CO) PCI group, only the culprit lesion was treated during the initial procedure, followed by either planned-staged or ischemia-driven revascularization of the non-culprit lesions. Fluoroscopy time and contrast dye amount were compared between both groups, and patients were followed up for one year for major adverse cardiac events (MACE) and other significant clinical events. RESULTS: The two groups were well balanced in terms of clinical characteristics, number of diseased vessels and angiographic characteristics of the culprit lesion. In the MV-PCI group, 2.51 lesions per patient were treated using 2.96 +/- 1.34 stents (1.00 lesions and 1.76 +/- 1.17 stents in the CO-PCI group, both p < 0.001). The fluoroscopy time increased from 10.3 (7.2-16.9) min in the CO-PCI group to 12.5 (8.5-19.3) min in the MV-PCI group (p = 0.22), and the amount of contrast used from 200 (180-250) ml to 250 (200-300) ml, respectively (p = 0.16). Peak CK and CK-MB were significantly lower in patients of the MV-PCI group (843 +/- 845 and 135 +/- 125 vs 1652 +/- 1550 and 207 +/- 155 U/l, p < 0.001 and 0.01, respectively). Similar rates of major adverse cardiac events at one year were observed in the two groups (24% and 28% in multi-vessel and culprit treatment groups, p = 0.73). The incidence of new revascularization in both infarct- and non-infarct-related arteries was also similar (24% and 28%, respectively, p = 0.73). CONCLUSION: We may state from this limited experience that a multi-vessel stenting approach for patients with acute STEMI and multi-vessel disease is feasible and probably safe during routine clinical practice. Our data suggest that this approach may help to limit the infarct size. However, larger studies, perhaps using drug-eluting stents, are still needed to further evaluate the safety and efficiency of this procedure, and whether it is associated with a lower need of subsequent revascularization and lower costs.
Resumo:
INTRODUCTION: The aim of this prospective study was to analyse small band-like cortical infarcts after subarachnoid haemorrhage (SAH) using magnetic resonance imaging (MRI) with reference to additional digital subtraction angiography (DSA). METHODS: In a 5-year period between January 2002 and January 2007 10 out of 188 patients with aneurysmal SAH were evaluated (one patient Hunt and Hess grade I, one patient grade II, four patients grade III, two patients grade IV, and two patients grade V). The imaging protocol included serially performed MRI with diffusion- and perfusion-weighted images (DWI/PWI) at three time points after aneurysm treatment, and cerebral vasospasm (CVS) was analysed on follow-up DSA on day 7+/-3 after SAH. RESULTS: The lesions were located in the frontal lobe (n=10), in the insular cortex (n=3) and in the parietal lobe (n=1). The band-like infarcts occurred after a mean time interval of 5.8 days (range 3-10 days) and showed unexceptional adjacent thick sulcal clots. Seven out of ten patients with cortical infarcts had no or mild CVS, and in the remaining three patients DSA disclosed moderate (n=2) or severe (n=1) CVS. CONCLUSION: The infarct pattern after aneurysmal SAH includes cortical band-like lesions. In contrast to territorial infarcts or lacunar infarcts in the white matter which develop as a result of moderate or severe proximal and/or distal vasospasm visible on angiography, the cortical band-like lesions adjacent to sulcal clots may also develop without evidence of macroscopic vasospasm, implying a vasospastic reaction of the most distal superficial and intraparenchymal vessels.
Resumo:
OBJECTIVE: Perforating arteries are commonly involved during the surgical dissection and clipping of intracranial aneurysms. Occlusion of perforating arteries is responsible for ischemic infarction and poor outcome. The goal of this study is to describe the usefulness of near-infrared indocyanine green videoangiography (ICGA) for the intraoperative assessment of blood flow in perforating arteries that are visible in the surgical field during clipping of intracranial aneurysms. In addition, we analyzed the incidence of perforating vessels involved during the aneurysm surgery and the incidence of ischemic infarct caused by compromised small arteries. METHODS: Sixty patients with 64 aneurysms were surgically treated and prospectively included in this study. Intraoperative ICGA was performed using a surgical microscope (Carl Zeiss Co., Oberkochen, Germany) with integrated ICGA technology. The presence and involvement of perforating arteries were analyzed in the microsurgical field during surgical dissection and clip application. Assessment of vascular patency after clipping was also investigated. Only those small arteries that were not visible on preoperative digital subtraction angiography were considered for analysis. RESULTS: The ICGA was able to visualize flow in all patients in whom perforating vessels were found in the microscope field. Among 36 patients whose perforating vessels were visible on ICGA, 11 (30%) presented a close relation between the aneurysm and perforating arteries. In one (9%) of these 11 patients, ICGA showed occlusion of a P1 perforating artery after clip application, which led to immediate correction of the clip confirmed by immediate reestablishment of flow visible with ICGA without clinical consequences. Four patients (6.7%) presented with postoperative perforating artery infarct, three of whom had perforating arteries that were not visible or distant from the aneurysm. CONCLUSION: The involvement of perforating arteries during clip application for aneurysm occlusion is a usual finding. Intraoperative ICGA may provide visual information with regard to the patency of these small vessels.
Resumo:
Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.
Resumo:
BACKGROUND: The aim of this study was to determine the clinical and radiological outcome of acute stroke patients who had no vessel occlusion on arteriography and to define predictors of clinical outcome. METHODS: We analyzed clinical and radiological data of stroke patients whose arteriography performed within 6 hours of symptom onset did not visualize any vessel occlusion. RESULTS: Twenty-eight of 283 consecutive patients (10%) who underwent arteriography with the intention to perform intraarterial thrombolysis did not show any arterial occlusion. Their median baseline National Institutes of Health Stroke Scale (NIHSS) score was 7. Time from symptom onset to arteriography ranged from 115 to 315 minutes; on average, it was 226 minutes. Presumed stroke cause was cardiac embolism in 11 patients (39%), small artery disease in 6 (21%), coronary angiography in 1 (4%), and undetermined in 10 patients (36%). After 3 months, modified Rankin Scale score (mRS) was < or =2 in 21 patients (75%), indicating a favorable outcome. Six patients (21%) had a poor outcome (mRS 3 or 4) and 1 patient (4%) had a myocardial infarction and died. Twenty-seven patients had follow-up brain imaging. It was normal in 5, showed a lacunar lesion in 8, a striatocapsular infarct in 2, a small or medium-sized anterior circulation infarct in 6, multiple small anterior circulation infarcts in 2, and multiple posterior circulation infarcts in 4. No predictors of clinical outcome were identified. CONCLUSIONS: Most acute stroke patients with normal early arteriography show infarcts on brain imaging; however, clinical outcome is usually favorable.
Resumo:
BACKGROUND: The efficacy of granulocyte colony-stimulating factor (G-CSF) for coronary collateral growth promotion and thus impending myocardial salvage has not been studied so far, to our best knowledge. METHODS AND RESULTS: In 52 patients with chronic stable coronary artery disease, age 62+/-11 years, the effect on a marker of myocardial infarct size (ECG ST segment elevation) and on quantitative collateral function during a 1-minute coronary balloon occlusion was tested in a randomized, placebo-controlled, double-blind fashion. The study protocol before coronary intervention consisted of occlusive surface and intracoronary lead ECG recording as well as collateral flow index (CFI, no unit) measurement in a stenotic and a > or =1 normal coronary artery before and after a 2-week period with subcutaneous G-CSF (10 microg/kg; n=26) or placebo (n=26). The CFI was determined by simultaneous measurement of mean aortic, distal coronary occlusive, and central venous pressure. The ECG ST segment elevation >0.1 mV disappeared significantly more often in response to G-CSF (11/53 vessels; 21%) than to placebo (0/55 vessels; P=0.0005), and simultaneously, CFI changed from 0.121+/-0.087 at baseline to 0.166+/-0.086 at follow-up in the G-CSF group, and from 0.152+/-0.082 to 0.131+/-0.071 in the placebo group (P<0.0001 for interaction of treatment and time). The absolute change in CFI from baseline to follow-up amounted to +0.049+/-0.062 in the G-CSF group and to -0.010+/-0.060 in the placebo group (P<0.0001). CONCLUSIONS: Subcutaneous G-CSF is efficacious during a short-term protocol in improving signs of myocardial salvage by coronary collateral growth promotion.
Resumo:
AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.
Resumo:
A 57-year-old man, operated eight years before for a left frontal falx meningioma, presented with short lasting, stereotyped episodes of paresthesias ascending from the right foot to the hand. A diagnosis of somatosensory seizures with jacksonian march was made. The patient was given antiepilectics but 5 days later, a few hours after another paresthesic episodes, he developed right hemiplegia, hemianesthesia and dysartria due to an infarct of left capsular posterior limb. We deem that in this patient the paresthesic episodes were more likely an expression of a capsular warning syndrome than of parietal epilepsy because of the frontal localization of the surgical lesion, the absence of motor components in all episodes, the negativity of repeated EEG, and the lack of recurrences after stroke. In capsular warning syndrome sensory symptoms mimicking a jacksonian march can be due to ischemic depolarization progressively recruiting the somatotopically arranged sensory fibers in the posterior capsular limb.
Resumo:
The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.