722 resultados para Inertia ellipsoid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-dispersed YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) nanocrystals with uniform morphology and size have been synthesized via a facile solvothermal route. XRD results demonstrate that all of the three samples can be well indexed to the pure tetragonal phase Of YVO4, indicating that the Eu3+, Dy3+, and Sm3+ have been effectively doped into the host lattices of YVO4. TEM images show that the YVO4 nanocrystals exhibit ellipsoid shape and a mean size of about 20 nm, which is in good agreement with the estimation of XRD results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The static and dynamic properties of polymer chains in athermal solvents with different sizes are studied by molecular dynamics method. With increasing solvent size, the radius of gyration and the diffusion coefficient of the polymer decay fast until a critical solvent size is reached. For the polymer diffusion coefficients, this decay only depends on the solvent size; while for the radius of gyration of polymers, this decay depends on both solvent size and the length of the polymers. The increase of solvent size also makes the polymer tend to be thicker ellipsoid until a critical solvent size is reached. The static scaling exponent of the polymer also shows the solvent size dependence. Moreover, four regions are identified where the polymers show different dynamic behaviors according to the dynamic structure factors of the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive mold filling is one of the important stages in resin transfer molding processes, in which resin curing and edge effects are important characteristics. On the basis of previous work, volume-averaging momentum equations involving viscous and inertia terms were adopted to describe the resin flow in fiber preform, and modified governing equations derived from the Navier-Stokes equations are introduced to describe the resin flow in the edge channel. A dual-Arrhenius viscosity model is newly introduced to describe the chemorheological behavior of a modified bismaleimide resin. The influence of the curing reaction and processing parameters on the resin flow patterns was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny-Phillips and Lorenz ( L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny-Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid ( unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated, which show the following results. (1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160 W as its axis and a meridional seesaw pattern with 6-8 degrees N as its transverse axis. The meridional oscillation has a phase lag of about 90 to the zonal oscillation, both oscillations get together to form the El Nino/La Nina cycle, which behaves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12 degrees N. (2) There are two main patterns of wind stress anomalies in the tropical Pacific, of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific, and the abnormal cross- equatorial flow wind stress and its corresponding divergence field, which has a sign opposite to that of the equatorial region, in the off-equator of the tropical North Pacific, and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly. (3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle, which results in the sea level tilting, provides an initial potential energy to the mixed layer water oscillation, and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12 degrees N of the North Pacific basin, therefore determines the amplitude and route for ENSO cycle. The ITCZ anomaly has some effects on the phase transition. (4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific, which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation, which in turn intensifies the oscillation. The coupled system of ocean-atmosphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle. In conclusion, the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12 degrees N. When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation, the oscillation will be stronger or maintain as it is, while when the force is less than the resistance, the oscillation will be weaker, even break.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对洁净机器人手臂的转动惯量对系统动态性能的影响,在利用动能公式分析得到其转动惯量与位置关系的基础上,提出了一种位置PI闭环加前馈参数整定的控制方法。该控制方法是由位置值实时得到转动惯量,再由转动惯量来实时整定PI参数。仿真结果表明了该控制方法能有效抑制转动惯量的变化对系统动态性能的影响,且简单可行。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

自治潜水器(AUV,Autonomous Underwater Vehicle)是非线性、强耦合、大惯性的多输入多输出系统,又由于受到海流、传感器、执行机构等不确定性的影响,对AUV控制器的鲁棒性能提出了更高的要求。本文针对我国正在研制开发的长航程自治潜水器的特性及其对航行控制的要求,将PID控制与模糊控制的简便性、灵活性以及鲁棒性结合起来,为AUV设计了可在线修改PID参数的自适应模糊PID控制器,仿真结果证明了该种控制方法不但提高了AUV系统的动态特性,而且可在参数摄动和外界扰动时获得较好的控制性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文在给出一种非递推形式的逆动力学计算公式的基础上,针对机械臂惯性矩阵的计算提出了一种面向O(n)个处理器的并行算法,并以PUMA560机器人的前3个臂为例进行了计算效率分析

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在空间对接机构地面缓冲实验平台上,为了模拟空间失重状态,研制了一种高精度、高响应速度的主动对接环重力平衡装置。介绍了对接环重力平衡装置的机构原理。对对接过程随动装置的随动性对系统的干扰进行了详细分析。进行了重力平衡器相关实验,从实验数据和理论分析可以得出:所设计的重力平衡装置完全满足对摩擦阻力和惯性阻力设计指标的要求,重力平衡达到1.1%的精度。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum VHlhro) point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fN