971 resultados para Inducible Ischemia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cardiac ischemia is usually characterized as a disease of the myocyte, it is clear that the vasculature, and especially endothelial cells, is also a major target of this pathology. Indeed, using a rat model of ischemia/reperfusion, we were able to detect severe endothelial dysfunction (assessed as a decreased response to acetylcholine) after acute or chronic reperfusion. Given the essential role of the endothelium in the regulation of vascular tone, as well as platelet and leukocyte function, such a severe dysfunction could lead to an increased risk of vasospasm, thrombosis and accelerated atherosclerosis. This dysfunction can be prevented by free radical scavengers and by exogenous nitric oxide. Endothelial dysfunction can also be prevented by preconditioning with brief periods of intermittent ischemia, thus extending to coronary endothelial cells the concept of endogenous protection previously described at the myocyte level. Experiments performed on cultured cells showed that the endothelial protection induced by free radical scavengers or by preconditioning was due to a lesser expression of endothelial adhesion molecules such as intercellular adhesion molecule-1, leading to a lesser adhesion of neutrophils to endothelial cells. Identification of the mechanisms of this protection may lead to the development of new strategies aimed at protecting the vasculature in ischemic heart diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the sensitivity of dipyridamole, dobutamine and pacing stress echocardiography for the detection of myocardial ischemia we produced a physiologically significant stenosis in the left circumflex artery of 14 open-chest dogs (range: 50 to 89% reduction in luminal diameter). In each study, dobutamine (5 to 40 µg kg-1 min-1 in 3-min stages) and pacing (20 bpm increments, each 2 min, up to 260 bpm) were performed randomly, and then followed by dipyridamole (up to 0.84 mg/kg over 10 min). The positivity of stress echocardiography tests was quantitatively determined by a significant (P<0.05) reduction of or failure to increase absolute and percent systolic wall thickening in the stenotic artery supplied wall, as compared to the opposite wall (areas related to the left anterior descending artery). Systolic and diastolic frozen images were analyzed off-line by two blinded observers in the control and stress conditions. The results showed that 1) the sensitivity of dobutamine, dipyridamole and pacing stress tests was 57, 57 and 36%, respectively; 2) in animals with positive tests, the mean percent change of wall thickening in left ventricular ischemic segments was larger in the pacing (-19 ± 11%) and dipyridamole (-18 ± 16%) tests as compared to dobutamine (-9 ± 6%) (P = 0.05), but a similar mean reduction of wall thickening was observed when this variable was normalized to a control left ventricular segment (area related to the left anterior descending artery) (pacing: -16 ± 7%; dipyridamole: -25 ± 16%; dobutamine: -26 ± 10%; not significant), and 3) a significant correlation was observed between magnitude of coronary stenosis and left ventricular segmental dysfunction induced by ischemia in dogs submitted to positive stress tests. We conclude that the dobutamine and dipyridamole stress tests showed identical sensitivities for the detection of myocardial ischemia in this one-vessel disease animal model with a wide range of left circumflex artery stenosis. The pacing stress test was less sensitive, but the difference was not statistically significant. The magnitude of segmental left ventricular dysfunction induced by ischemia was similar in all stress tests evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is recognized that an imbalance of the autonomic nervous system is involved in the genesis of ventricular arrhythmia and sudden death during myocardial ischemia. In the present study we investigated the effects of clonidine and rilmenidine, two centrally acting sympathomodulatory drugs, on an experimental model of centrally induced sympathetic hyperactivity in pentobarbital-anesthetized New Zealand albino rabbits of either sex (2-3 kg, N = 89). We also compared the effects of clonidine and rilmenidine with those of propranolol, a ß-blocker, known to induce protective cardiovascular effects in patients with ischemic heart disease. Central sympathetic stimulation was achieved by intracerebroventricular injection of the excitatory amino acid L-glutamate (10 µmol), associated with inhibition of nitric oxide synthesis with L-NAME (40 mg/kg, iv). Glutamate triggered ventricular arrhythmia and persistent ST-segment shifts in the ECG, indicating myocardial ischemia. The intracisternal administration of clonidine (1 µg/kg) and rilmenidine (30 µg/kg) or of a nonhypotensive dose of rilmenidine (3 µg/kg) decreased the incidence of myocardial ischemia (25, 14 and 25%, respectively, versus 60% in controls) and reduced the mortality rate from 40% to 0.0, 0.0 and 12%, respectively. The total number of ventricular premature beats per minute fell from 30 ± 9 in the control group to 7 ± 3, 6 ± 3 and 2 ± 2, respectively. Intravenous administration of clonidine (10 µg/kg), rilmenidine (300 µg/kg) or propranolol (500 µg/kg) elicited similar protective effects. We conclude that clonidine and rilmenidine present cardioprotective effects of central origin, which can be reproduced by propranolol, a lipophilic ß-blocking agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuroprotective effect of the immunosuppressant agent FK506 was evaluated in rats after brain ischemia induced for 15 min in the 4-vessel occlusion model. In the first experimental series, single doses of 1.0, 3.0 or 6.0 mg FK506/kg were given intravenously (iv) immediately after ischemia. In the second series, FK506 (1.0 mg/kg) was given iv at the beginning of reperfusion, followed by doses applied intraperitoneally (ip) 6, 24, 48, and 72 h post-ischemia. The same protocol was used in the third series except that all 5 doses were given iv. Damage to the hippocampal field CA1 was assessed 7 or 30 days post-ischemia on three different stereotaxic planes along the septotemporal axis of the hippocampus. Ischemia caused marked neurodegeneration on all planes (P<0.001). FK506 failed to provide neuroprotection to CA1 both when applied iv as a single dose of 1.0, 3.0 or 6.0 mg/kg (experiment 1), and after five iv injections of 1.0 mg/kg (experiment 3). In contrast, the repeated administration of FK506 combining iv plus ip administration reduced CA1 cell death on all stereotaxic planes both 7 and 30 days post-ischemia (experiment 2; P<=0.01). Compared to vehicle alone, FK506 reduced rectal temperature in a dose-dependent manner (P<=0.05); however, this effect did not alter normothermia (37ºC). FK506 reduced ischemic brain damage, an effect sustained over time and apparently dependent on repeated doses and on delivery route. The present data extend previous findings on the rat 4-vessel occlusion model, further supporting the possible use of FK506 in the treatment of ischemic brain damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to determine the relationship between nitric oxide synthases (NOS) and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD) and left ventricular ejection fraction (LVEF) <35% (N = 10), and from patients with CAD and LVEF >60% (N = 10) during cardiac surgery. NOS activity was measured by the conversion of L-[H³]-arginine to L-[H³]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS) activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001) and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001), respectively. In contrast, inducible NOS (iNOS) activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001) and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001), respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35%. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastrointestinal motility disturbances during endotoxemia are probably caused by lipopolysaccharide (LPS)-induced factors: candidates include nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1ß, and interleukin-6. Flow cytometry was used to determine the effects of LPS and these factors on gastric emptying (evaluated indirectly by determining percent gastric retention; %GR) and gastrointestinal transit (GIT) in male BALB/c mice (23-28 g). NO (300 µg/mouse, N = 8) and TNF-alpha (2 µg/mouse, N = 7) increased (P < 0.01) GR and delayed GIT, mimicking the effect of LPS (50 µg/mouse). During early endotoxemia (1.5 h after LPS), inhibition of inducible NO synthase (iNOS) by a selective inhibitor, 1400 W (150 µg/mouse, N = 11), but not antibody neutralization of TNF-alpha (200 µg/mouse, N = 11), reversed the increase of GR (%GR 78.8 ± 3.3 vs 47.2 ± 7.5%) and the delay of GIT (geometric center 3.7 ± 0.4 vs 5.6 ± 0.2). During late endotoxemia (8 h after LPS), both iNOS inhibition (N = 9) and TNF-alpha neutralization (N = 9) reversed the increase of GR (%GR 33.7 ± 2.0 vs 19.1 ± 2.6% (1400 W) and 20.1 ± 2.0% (anti-TNF-alpha)), but only TNF-alpha neutralization reversed the delay of GIT (geometric center 3.9 ± 0.4 vs 5.9 ± 0.2). These findings suggest that iNOS, but not TNF-alpha, is associated with delayed gastric emptying and GIT during early endotoxemia and that during late endotoxemia, both factors are associated with delayed gastric emptying, but only TNF-alpha is associated with delayed GIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis, the leading cause of death in intensive care units, is associated with overproduction of nitric oxide (NO) due to inducible NO synthase (iNOS), responsible for some of the pathologic changes. Aminoguanidine (AG) is a selective iNOS inhibitor with reported inconsistent actions in sepsis. To investigate the influence of iNOS, we studied models of acute bacterial sepsis using acute challenges with aerobic (Escherichia coli) and anaerobic (Bacteroides fragilis) bacteria in the presence of AG. Six-week-old, 23 g, male and female BALB/c and C57Bl/6j mice, in equal proportions, were inoculated (ip) with bacteria in groups of 4 animals for each dose and each experiment in the absence or presence of AG (50 mg/kg, ip, starting 24 h before challenge and daily until day 6) and serum nitrate was measured by chemiluminescence. Both types of bacteria were lethal to mice, with an LD50 of 6 nephelometric units (U) for E. coli and 8 U for B. fragilis. Nitrate production peaked on the second day after E. coli inoculation with 8 and 6 U (P < 0.05), but was absent after non-lethal lower doses. After challenge with B. fragilis this early peak occurred at all tested doses after 24 h, including non-lethal ones (P < 0.05). AG-treated mice challenged with E. coli presented higher survival (P < 0.05) and increased LD50. AG-treated mice challenged with B. fragilis had lower LD50 and higher mortality. Control AG-treated animals presented no toxic effects. The opposite effect of iNOS blockade by AG in these models could be explained by restriction of oxygen for immune cells or an efficient action of NO in anaerobic localized infections. The antagonic role of NO production observed in our bacterial models could explain the reported discrepancy of NO action in sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT) initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C) or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8) and 2-month (N = 8) survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively). When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8) and 6-month (N = 9) survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively). These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial ischemia may occur during an exercise session in cardiac rehabilitation programs. However, it has not been established whether it is elicited when exercise prescription is based on heart rate corresponding to the anaerobic threshold as measured by cardiopulmonary exercise testing. Our objective was to determine the incidence of myocardial ischemia in cardiac rehabilitation programs according to myocardial perfusion SPECT in exercise programs based on the anaerobic threshold. Thirty-nine patients (35 men and 4 women) diagnosed with coronary artery disease by coronary angiography and stress technetium-99m-sestamibi gated SPECT associated with a baseline cardiopulmonary exercise test were assessed. Ages ranged from 45 to 75 years. A second cardiopulmonary exercise test determined training intensity at the anaerobic threshold. Repeat gated-SPECT was obtained after a third cardiopulmonary exercise test at the prescribed workload and heart rate. Myocardial perfusion images were analyzed using a score system of 6.4 at rest, 13.9 at peak stress, and 10.7 during the prescribed exercise (P < 0.05). The presence of myocardial ischemia during exercise was defined as a difference ≥2 between the summed stress score and summed rest score. Accordingly, 25 (64%) patients were classified as ischemic and 14 (36%) as nonischemic. MIBI-SPECT showed myocardial ischemia during exercise within the anaerobic threshold. The 64% prevalence of ischemia observed in the study should not be looked on as representative of the whole population of patients undergoing exercise programs. Changes in patient care and exercise programs were implemented as a result of our finding of ischemia during the prescribed exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 µg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.