968 resultados para Induced Pluripotent Stem Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The potential of stem cells (SCs) as a source for cell-based therapy on a wide range of degenerative diseases and damaged tissues such as retinal degeneration has been recognized. Generation of a high number of retinal stem cells (RSCs) in vitro would thus be beneficial for transplantation in the retina. However, as cells in prolonged cultivation may be unstable and thus have a risk of transformation, it is important to assess the stability of these cells. METHODS: Chromosomal aberrations were analyzed in mouse RSC lines isolated from adult and from postnatal day (PN)1 mouse retinas. Moreover, selected cell lines were tested for anchorage-dependent proliferation, and SCs were transplanted into immunocompromised mice to assess the possibility of transformation. RESULTS: Marked aneuploidy occurred in all adult cell lines, albeit to different degrees, and neonatal RSCs were the most stable and displayed a normal karyotype until at least passage 9. Of interest, the level of aneuploidy of adult RSCs did not necessarily correlate with cell transformation. Only the adult RSC lines passaged for longer periods and with a higher dilution ratio underwent transformation. Furthermore, we identified several cell cycle proteins that might support the continuous proliferation and transformation of the cells. CONCLUSIONS: Adult RSCs rapidly accumulated severe chromosomal aberrations during cultivation, which led to cell transformation in some cell lines. The culture condition plays an important role in supporting the selection and growth of transformed cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Activating mutations of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) were identified in both somatic and familial neuroblastoma. The most common somatic mutation, F1174L, is associated with NMYC amplification and displayed an efficient transforming activity in vivo. In addition, both AKL-F1174L and NMYC were shown cooperate in neuroblastoma tumorigenesis in animal models. To analyse the role of ALK mutations in the oncogenesis of neuroblastoma, ALK wt and various ALK mutants were transduced in murine neural crest stem cells (MONC1). Methods: ALK-wt, and F1174L, and R1275Q mutants were stably expressed by retroviral infection using the pMIGR1 vector in the murine neural crest stem cell line MONC-1, previously immortalised with v-myc, and further implanted subcutaneously or orthotopically in nude mice. Results: Both MONC1-ALK-F1174L and -R1275Q cells displayed a rapid tumour forming capacity upon subcutaneous injection in nude mice compared to control MONC1-MIGR or MONC1 cells. Interestingly, the transforming capacity of the F1174L mutant was much more potent compared to that of R1275Q mutant in murine neural crest stem cells, while ALK-wt was not tumorigenic. In addition, mice implanted orthotopically in the left adrenal gland with MONC1-ALK-F1174L cells developed highly aggressive tumours in 100% of mice within three weeks, while MONC1-Migr or MONC1 derived tumours displayed a longer latency and a reduced tumour take. Conclusions: The activating ALK-F1174L mutant is highly tumorigenic in neural crest stem cells. Nevertheless, we cannot exclude a functional implication of the v-myc oncogene used for MONC1 cells immortalisation. Indeed, the control MONC1-Migr and MONC1 cells were also able to derive subcutaneous and orthotopic tumours, although with considerable reduced efficiency. Further investigations using neural crest stem cell lacking exogenous myc expression are currently on way to assess the exclusive role of ALK mutations in NB oncogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the first reports of induction of adipose-derived stem cells (ASC) into neuronal and glial cell phenotypes, expectations have increased regarding their use in tissue engineering applications for nerve repair. Cell adhesion to extracellular matrix (ECM) is a basic feature of survival, differentiation, and migration of Schwann cells (SC) during nerve regeneration, and fibronectin and laminin are two key molecules of this process. Interaction between ECM and SC-like differentiated ASC (dASC) could potentially improve the neurotrophic potential of the stem cells. We have investigated the effect of ECM molecules on SC-like dASC in terms of proliferation, adhesion, and cell viability. Fibronectin and laminin did not affect the proliferation of dASC when compared with cell adherent tissue culture plastic, but significantly improved viability and cell attachment when dASC were exposed to apoptotic conditions. To assess the influence of the ECM molecules on dASC neurotrophic activity, dASC were seeded onto ECM-coated culture inserts suspended above dorsal root ganglia (DRG) sensory neurons. Neurite outgrowth of DRG neurons was enhanced when dASC were seeded on fibronectin and laminin when compared with controls. When DRG neurons and dASC were in direct contact on the various surfaces there was significantly enhanced neurite outgrowth and coculture with laminin-conditioned dASC produced the longest neurites. Compared with primary SCs, dASC grown on laminin produced similar levels of neurite outgrowth in the culture insert experiments but neurite length was shorter in the direct contact groups. Anti β1 integrin blocking antibody could inhibit baseline and dASC evoked neurite elongation but had no effect on outgrowth mediated by laminin-conditioned dASC. ECM molecules had no effect on the levels of nerve growth factor and brain-derived neurotrophic factor secretion from dASC. The results of the study suggest that ECM molecules can significantly improve the potential of dASC for nerve regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In otherwise successful gene therapy trials for the treatment of SCID patients and others, insertional mutagenesis has resulted in leukemia development. Besides the integration of vectors that including strong enhancers, more recently, SIN-vectors have been shown to partially retain oncogenic potential. The identification of genetic elements which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts met with difficulties in producing the vectors and poor efficacy of the insulators (GIE). The improvement of integrating vectors safety has been investigated using new candidate synthetic GIEs. The latter have been introduced in retroviral and lentiviral vectors. Native LTRs, SIN-LTRs, and SIN-insulated constructs have been designed and compared, using two sets of internal promoter, i.e. strong and housekeeping. We could establish that a specific insulator translates at best into functional activity and boundary effect in both vector types. We could also determine that other genetic elements are key determinants in order to achieve accurate expression and viral titre, from these insulated vectors. A dramatic shift in the expression profile is observed in target cells, with a homogenous pattern including data on both cell-lines and primary HSCs from cord blood. The assessment of potential genotoxicity will be presented, based on the comparison of the integration patterns ingenuity in human target cells sampled over a three months period with both reference LTRs and SIN versus test insulated vectors, using high-throughput pyro-sequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence indicates that a subpopulation of tumor cells, the so-called cancer stem cells (CSCs), drive tumor growth and metastasis and preclude therapy efficiency. CSCs have been isolated in virtually all type of tumors. These findings may have important consequences for clinical prognostic. Current cancer research aims to unravel the CSCs' unique biological mechanisms. The development of new CSCs-targeted treatments shed therefore new hopes in improving cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi realitzat a partir d’una estada a la the Salk Institute, Estats Units, entre 2010 i 2012. L'estabilitat del genoma és essencial per a la supervivència de les cèl • lules mare, però, l'estabilitat del proteoma pot tenir un paper igualment important en la identitat de cèl • lules mare i la seva funció. La nostra hipòtesi és que les cèl • lules mare tenen la capacitat de proteostasis augmentada en comparació amb els seus homòlegs diferenciats i ens varem preguntar si l'activitat del proteasoma és diferent a les cèl • lules mare embrionàries humanes (hESCs). En particular, els nostres resultats mostren que les poblacions de cèl• lules mare presenten una activitat del proteasoma que es correlaciona amb majors nivells de la subunitat 19S del proteasoma PSMD11/RPN-6 i un corresponent augment del ensamblatge del 26S/30S proteasoma. L'expressió ectòpica de PSMD11 és suficient per augmentar l'activitat del proteasoma. Sorprenentment, varem trobar que la llarga vida del GLP-1 C. elegans mutant té també un augment dramàtic en l'activitat del proteasoma associat a nivells augmentats en l'expressió de RPN-6. El factor de transcripció DAF-16 és essencial per l'augment de la longevitat de GLP-1 i els cucs mutants que trobem DAF-16 necessari per a l'augment d'expressió de RPN-6 i, per tant, per l'activació de l'activitat del proteasoma en GLP-1 mutant animals. Una possibilitat interessant és que els gens que regulen la vida i la resistència a l'estrès en C. elegans poden també regular la funció hESCs de mamífer, cèl • lules que son considerades immortals. Aquests resultats ens van portar a la conclusió de que FOXO4, un factor de transcripció sensible a la insulina/IGF-1, regula l'activitat del proteasoma en hESCs, el que suggereix un paper per FOXO4 en la funció d’aquestes cèl • lules. En efecte, FOXO4 es necessari per a la diferenciació en llinatges neuronals de les hESCs. Els nostres resultats estableixen una nova regulació de laproteostasis en hESCs que uneix la longevitat i la resistència a l'estrès en invertebrats amb la funció i identitat de les hESCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the legislative issues related toembryo research and human embryonic stem cell (hESC)research in Spain and the derivation of nine hESC lines atthe Center of Regenerative Medicine in Barcelona. You canfind the information for obtaining our lines for researchpurposes at blc@cmrb.eu.