952 resultados para Individual atomic scale


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic force microscope (AFM) was used to continuously follow height changes of individual protein molecules exposed to physiological stimuli. A AFM tip was coated with ROMK1 (a cloned renal epithelial potassium channel known to be highly pH sensitive) and lowered onto atomically flat mica surface until the protein was sandwiched between AFM tip and mica. Because the AFM tip was an integral part of a highly flexible cantilever, any structural alterations of the sandwiched molecule were transmitted to the cantilever. This resulted in a distortion of the cantilever that was monitored by means of a laser beam. With this system it was possible to resolve vertical height changes in the ROMK1 protein of ≥0.2 nm (approximately 5% of the molecule’s height) with a time resolution of ≥1 msec. When bathed in electrolyte solution that contained the catalytic subunit of protein kinase A and 0.1 mM ATP (conditions that activate the native ion channel), we found stochastically occurring height fluctuations in the ROMK1 molecule. These changes in height were pH-dependent, being greatest at pH 7.6, and lowering the pH (either by titration or by the application of CO2) reduced their magnitude. The data show that overall changes in shape of proteins occur stochastically and increase in size and frequency when the proteins are active. This AFM “molecular-sandwich” technique, called MOST, measures structural activity of proteins in real time and could prove useful for studies on the relationship between structure and function of proteins at the molecular level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discoveries during the last two years have revealed the existence of a vast region of star formation close to the base of the Scutum Arm, where at least five clusters of red supergiants have been found. In order to understand the nature of this region, we need to determine accurate distances to the clusters. We present here the first results of an ongoing program to derive fundamental parameters (such as age, distance, etc.) to the massive cluster Stephenson 2 studying for the first time its main sequence stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vela X–1 is the prototype of the class of wind-fed accreting pulsars in high-mass X-ray binaries hosting a supergiant donor. We have analysed in a systematic way 10 years of INTEGRAL data of Vela X–1 (22–50 keV) and we found that when outside the X-ray eclipse, the source undergoes several luminosity drops where the hard X-rays luminosity goes below ∼3 × 1035 erg s−1, becoming undetected by INTEGRAL. These drops in the X-ray flux are usually referred to as ‘off-states’ in the literature. We have investigated the distribution of these off-states along the Vela X–1 ∼ 8.9 d orbit, finding that their orbital occurrence displays an asymmetric distribution, with a higher probability to observe an off-state near the pre-eclipse than during the post-eclipse. This asymmetry can be explained by scattering of hard X-rays in a region of ionized wind, able to reduce the source hard X-ray brightness preferentially near eclipse ingress. We associate this ionized large-scale wind structure with the photoionization wake produced by the interaction of the supergiant wind with the X-ray emission from the neutron star. We emphasize that this observational result could be obtained thanks to the accumulation of a decade of INTEGRAL data, with observations covering the whole orbit several times, allowing us to detect an asymmetric pattern in the orbital distribution of off-states in Vela X–1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

'Reproduced with permission from Environmental Health Perspectives'

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the Proceedings of the American Association for the Advancement of Science, v. 48, 1899.