797 resultados para Indium.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 degrees C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Omega cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 x 10(15) cm(-3) and 30.7 cm(2)V(-1) s(-1) respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In: CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1-2 Omega cm and was reduced to 40 x 10(-3) Omega cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silver Indium Di-sulfide (AgInS2) thin films are deposited using ultrasonic spray pyrolysis technique and the effect of substrate temperature (T-s) on film growth is studied by varying the temperature from 250 to 400 degrees C. From the structural analysis, orthorhombic AgInS2 phase is identified with preferential orientation along (002) plane. Further analysis with Raman revealed the coexistence of Cu-Au ordered and chalcopyrite structures in the films. Stoichiometric films are obtained at T-s of 300 degrees C. Above 300 degrees C, the film conductivity changed from p to n-type and the grain size decreased. The band gap of AgInS2 films varied from 1.55 to 1.89 eV and absorption coefficient is found to be >10(4) cm(-1). The films have sheet resistance in the range of 0.05 to 1300 Omega/square Both p and n type films are prepared through this technique without any external doping. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monodisperse colloidal gold-indium (AuIn2) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn2 intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn2 with particle size distribution of 3.7 +/- 1.0 nm and 5.0 +/- 1.6 nm, respectively. UV-visible spectral studies brought out the absence of SPR band in pure AuIn2 intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn2 intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag3In intermetallic nanoparticles with the dimension of less than 10 nm. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the InxGa1 (-) As-x channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the InxGa1 (-) As-x layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the InxGa1 (-) As-x channel layer was pseudomorphically grown leading to tetragonal strain along the 001] growth direction and that the average indium content (x) in the epilayer is similar to 0.12. We found consistency in the results obtained using various methods of analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CuIn1-xAlxSe2 (CIAS) thin films were grown on the flexible stainless steel substrates, by de co-sputtering from the elemental cathodes. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport and vacuum evaporation of Se. X-ray diffraction, scanning electron microscopy and UV-visible absorption spectroscopy were used to characterize the selenized films The composition (x=Al/Al+In) with 0 <= x <= 0.65 was varied by substituting Al with indium in CuInSe2. Lattice parameters, average crystallite sizes and compact density of the films compared to CuInSe2, decreased and (112) peak shifted to higher Bragg's angle, with Al incorporation. Cells were fabricated with the device structure SS/Mo/CIAS/CdS/iZno-AZO/Al. Best cell showed the efficiency of 6.8%, with x=0.13, Eg=1.17 eV, fill factor 45.04, short circuit current density J 30 mA/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A label-free biosensor has been fabricated using a reduced graphene oxide (RGO) and anatase titania (ant-TiO2) nanocomposite, electrophoretically deposited onto an indium tin oxide coated glass substrate. The RGO-ant-TiO2 nanocomposite has been functionalized with protein (horseradish peroxidase) conjugated antibodies for the specific recognition and detection of Vibrio cholerae. The presence of Ab-Vc on the RGO-ant-TiO2 nanocomposite has been confirmed using electron microscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Electrochemical studies relating to the fabricated Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode have been conducted to investigate the binding kinetics. This immunosensor exhibits improved biosensing properties in the detection of Vibrio cholerae, with a sensitivity of 18.17 x 10(6) F mol(-1) L-1 m(-2) in the detection range of 0.12-5.4 nmol L-1, and a low detection limit of 0.12 nmol L-1. The association (k(a)), dissociation (k(d)) and equilibrium rate constants have been estimated to be 0.07 nM, 0.002 nM and 0.41 nM, respectively. This Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode could be a suitable platform for the development of compact diagnostic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The room temperature ferromagnetic behavior of InN nanosfructures grown by molecular beam epitaxy (MBE) is explored by means of magnetization measurements. The saturation magnetization and remanent magnetization are found to be strongly dependent on the size of the nanostructures. This suggests that the ferromagnetism is essentially confined to the surface of the nanostructures due to the possible defects. Raman spectroscopy shows the existence of indium vacancies which could be the source of ferromagnetic ordering in InN nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.