943 resultados para Independent-particle shell model
Resumo:
A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.
Resumo:
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Objective: Elevated neutral lipid content and mRNA expression of class A scavenger receptor (SRA) have been found in the renal cortex of the bovine growth hormone (bGH) mouse model of progressive glomerulosclerosis (GS). We hypothesize that the increased expression of SRA precedes glomerular scarring in this model. Design: Real time RT-PCR and immunofluorescence were employed to measure SRA and collagen types I and IV in the bGH transgenic and control mice at 5 and 12 weeks (wk) of age to determine the chronology of change in SRA expression in relation to glomerular scarring. Alternative mechanisms for increasing glomerular lipid were assessed by measuring mRNA expression levels of low-density lipoprotein receptor (LDL-r), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), and ATP-binding cassette transporter A1 (ABCA1). In addition, the involvement of macrophages in early GS was assessed by CD68 mRNA expression in kidney cortex. Results: Both mRNA and protein levels of SRA were significantly increased in 5-wk bGH compared with control mice, whereas the expression of collagen I and IV was unaltered. Unchanged levels of LDL-r and HMGR mRNA indicate that neither regulated cholesterol uptake via LDL-r nor the cholesterol synthetic pathway played a role in the early lipid increase. The finding of increased ABCA1 expression was an indicator of excess intracellular lipid in the renal cortex of bGH mice at 5 wk. CD68 expression in bGH did not differ significantly from that of controls at 5 wk suggesting that cortical macrophage infiltration was not increased in bGH mice at this time point. Conclusion: An early increase in SRA mRNA and protein expression in the bGH kidney precedes glomerular scarring and is independent of macrophage influx. Published by Elsevier Ltd. on behalf of Growth Hormone Research Society.
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.
Resumo:
An integrable eight-state supersymmetric U model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has a gl(3/1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained. [S0163-1829(98)00616-X].
Resumo:
A new two-parameter integrable model with quantum superalgebra U-q[gl(3/1)] symmetry is proposed, which is an eight-state fermions model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
In the preceding paper (Part I) force-deformation data were measured with the compression experiment in conjunction with the initial radial stretch ratio and the initial wall-thickness to cell-radius ratio for baker's yeast (Saccharomyces cerevisiae). In this paper, these data have been analysed with the mechanical model of Smith et al. (Smith, Moxham & Middelberg (1998) Chemical Engineering Science, 53, 3913-3922) with the wall constitutive behaviour defined a priori as incompressible and linear-elastic. This analysis determined the mean Young's modulus ((E) over bar), mean maximum von Mises stress-at-failure (<(sigma)over bar>(VM,f)) and mean maximum von Mises strain-at failure (<(epsilon)over bar>(VM,f)) to be (E) over bar = 150 +/- 15 MPa, <(sigma)over bar>(VM,f) = 70 +/- 4 MPa and <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08, respectively. The mean Young's modulus was not dependent (P greater than or equal to 0.05) on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting the incompressible linear-elastic relationship is representative of the actual cell-wall constitutive behaviour. Hydraulic conductivities were also determined and were comparable to other similar cell types (0-2.5 mu m/MPa s). The hydraulic conductivity distribution was not dependent on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting inclusion of cell-wall permeability in the mechanical model is justified. <(epsilon)over bar>(VM,f) was independent of cell diameter and to a first-approximation unaffected (P greater than or equal to 0.01) by external osmotic pressure and compression rate, thus providing a reasonable failure criterion. This criterion states that the cell-wall material will break when the strain exceeds <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08. Variability in overall cell strength during compression was shown to be primarily due to biological variability in the maximum von Mises strain-at-failure. These data represent the first estimates of cell-wall material properties for yeast and the first fundamental analysis of cell-compression data. They are essential for describing cell-disruption at the fundamental level of fluid-cell interactions in general bioprocesses. They also provide valuable new measurements for yeast-cell physiologists. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
The origin of M32, the closest compact elliptical galaxy (cE), is a long-standing puzzle of galaxy fort-nation in the Local Group. Our N-body/smoothed particle hydrodynamics simulations suggest a new scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical galaxy. As a low-luminosity spiral galaxy plunges into the central region of M31, most of the outer stellar and gaseous components of its disk are dramatically stripped as a result of M31's tidal field. The central bulge component, on the other hand, is just weakly influenced by the tidal field, owing to its compact configuration, and retains its morphology. M31's strong tidal field also induces rapid gas transfer to the central region, triggers a nuclear starburst, and consequently forms the central high-density and more metal-rich stellar populations with relatively young ages. Thus, in this scenario, M32 was previously the bulge of a spiral galaxy tidally interacting with M31 several gigayears ago. Furthermore, we suggest that cE's like M32 are rare, the result of both the rather narrow parameter space for tidal interactions that morphologically transform spiral galaxies into cE's and the very short timescale (less than a few times 10(9) yr) for cE's to be swallowed by their giant host galaxies (via dynamical friction) after their formation.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.