945 resultados para Impacting drop
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H2S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H2S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H2S sampled. The chemistry of this uniquely selective reaction has been well established for many years, the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable. (C) 1997 Elsevier B.V. B.V.
Resumo:
A method was developed for the differential-pulse cathodic stripping voltammetric determination of ceftazidime with a hanging mercury drop electrode using its reduction peak at -0.43 V in Britton-Robinson buffer pH 4.0. The optimum accumulation potential and time were -0.15 V and up to 60 s, respectively. Linear calibration graphs were obtained from 1 x 10(-8) M and 1.5 x 10(-7) M. The limit of determination was calculated to be 5 x 10(-9) M. The coefficient of variation was 4% (n = 7) at 1 x 10(-7) M ceftazidime. The effect of various components of urine on the voltammetric response was studied, and creatinine, uric acid, urea, and glucose were shown to interfere in the method. Ceftazidime bound to human albumin gives a unique stripping peak at -0.48 V. Recoveries of 87% +/- 2% of the ceftazidime (n = 5) were obtained from urine spiked with 1.27 mu g ml(-1) using C-18 solid phase extraction cartridges. (C) 1997 Academic Press.
Resumo:
A simple and sensitive method to determine parts per billion (ppb) of atmospheric formaldehyde in situ, using chromotropic acid, is described. A colorimetric sensor, coupled to a droplet of 15.5 muL chromotropic acid, was constructed and used to sample and quantify formaldehyde. The sensor was set up with two optical fibers, a right emitting diode (LED) and two photodiodes. The reference and transmitted light were measured by a photodetection arrangement that converts the signals into units of absorbance. Air was sampled around the chromotropic acid droplet. A purple product was formed and measured after the sampling terminated (typically 7 min). The response is proportional to the sampling period, analyte concentration and sample flow rate. The detection limit is similar to2 ppb and can be improved by using longer sampling times and/or a sampling flow rate higher than that used in this work, 200 mL min(-1). The present technique affords a simple, inexpensive near real-time measurement with very little reagent consumption. The method is selective and highly sensitive. This sensor could be used either for outdoor or indoor atmospheres.
Resumo:
Procion red HE-3B (RR120) is an example of dye currently used in affinity purification. A method is described for determining trace amounts of RR120 dye contaminant in human serum albumin by cathodic stripping voltammetry. The method is based on a measure of a well-defined peak at -0.58 V, obtained when samples of HSA protein (0.01-2% w/v) containing dye concentrations are submitted to a heating time of 330 min at 80degreesC in NaOH, pH 12.0 and the samples are removed to a solution containing Britton-Robinson buffer, pH 4.0. Using an optimum accumulation potential and tune of 0 V and 240 s, respectively, linear calibration curves were obtained from 1.0 X 10(-9) to 1.0 X 10(-8) mol 1(-1) for RR120 dye. Leakage/hydrolysis of reactive red 120 from an agarose support (e.g. at pH 2 or 12) can also be conveniently determined at very low levels (sub-mug ml(-1)) by means of cathodic stripping voltammetry, which involves adsorptive accumulation of the dye onto the hanging mercury-drop electrode. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.
Resumo:
Brazilian isolates of Colletotrichum spp. from citrus orchards affected by postbloom fruit drop were examined for colony colour, mycelial growth, benomyl-resistance, pathogenicity, and genetic variability by random amplified polymorphic DNA (RAPD) analysis. All isolates were obtained from flowers and persistent calyxes from different citrus hosts from São Paulo, Brazil. DNA polymorphisms detected after amplification with random 10-mer primers were used to classify the isolates into two groups. Group I isolates grew rapidly on potato-dextrose agar (PDA) and were sensitive to benomyl, and group II isolates grew slowly on PDA and were benomyl-resistant. Colletotrichum acutatum was analyzed by RAPD and had high genetic similarity with group II isolates of Colletotrichum from citrus. Probably, the group I is C, gloeosporioides and group II is C. acutatum.
Resumo:
Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.
Resumo:
A simple and sensitive method for determining atmospheric ammonia (NH3), using a hanging drop, is described. A colorimetric sensor is composed of two optical fibers and the source of monochromatic light implemented was a red light emitting diode (LED) (635 nm). Preliminary experiments were carried out in order to optimize the geometry of the sensor. These tests showed that the best signal absorbance was obtained using a 22 muL deionized water drop for sampling the gas and as addition of 4 muL of each of the reactants to form the blue dye (indophenol). Some important analytical parameters were also studied, including sampling time and flow rate. The analytical curve was constructed with a concentration range of 3-20 ppbv of gaseous NH3 standard. The detection limit reached was of ca 0.5 ppbv. It was observed that formaldehyde and diethylamine did not interfere. However, studies showed that hydrogen sulfide caused a negative interference of 20%, when present in the atmosphere in a concentration equal to that of NE3. The method considered here was shown to be easy to apply, making it possible to make a determination every 17 min.
Resumo:
A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensitive and affordable approach is described for the in-situ measurement of ambient formaldehyde. Air is sampled around a 100 microliter aqueous drop containing 3-methyl-2-benzothiazoline hydrazone. After a desired period of sampling (typ. 5 min) and a waiting period of 10 min for the reaction to be completed, a second reagent (FeCl3) is added to the drop by means of a conjoined conduit. A blue product is formed and is read after an additional 10 min of reaction by a fiber-optic/light emitting diode based photodetector. A fresh drop is then formed and the process begins anew. As demonstrated here, the limit of detection is similar to 6.25 mu g m(-3) HCHO but can be significantly improved by using longer sampling times and a sampling rate higher than 100 mi min(-1) used in most of this work. This is the first example of a chromogenic drop sensor that utilizes sequential reagent addition.
Resumo:
Pressure drop and minimum fluidization velocity were experimentally studied in a vibro-fluidized bed of inert particles subjected to different vibration intensities during drying of soursop pulp. Maltodextrin was added to the pulp in order to prevent stickiness between particles and the consequent bed collapse. Pulps were initially concentrated, resulting in pastes with different soluble solids content, and a constant fraction of maltodextrin was guaranteed in the final pulp samples. The pulp theological behavior as affected by temperature and total soluble solids content, including maltodextrin, was evaluated and the effect of pulp apparent viscosity on pressure drop and minimum vibro-fluidization velocity were investigated. Two types of inert particles -3.6 mm glass beads and 3 mm Teflon cylinders (length and diameter) - were tested and, due to lower pressure drop presented by Teflon cylinders during operation of the dry vibro-fluidized bed, these particles were adopted for pulp drying process. Increasing pulp apparent viscosity caused a considerable increase in the vibro-fluidized bed pressure drop during pulp drying and, as a consequence resulted in a larger value of minimum vibro-fluidization velocity. on the other hand, the negative effect of increasing apparent viscosity could be attenuated by increasing the fluidized bed vibration intensity, which could prevent stickiness between particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Postbloom fruit drop (PFD) of citrus caused by Colletotrichum acutatum produces orange-brown lesions on petals and induces the abscission of young fruitlets and the retention of the calyces. Despite the fact that C. acutatum is not highly sensitive to benomyl in culture, this fungicide provides good control of the disease under field conditions. This study was undertaken to determine the effect of benomyl on various stages of disease development to understand the basis for its effectiveness in the field. We found that benomyl at 1.0 μg/ml reduced colony area of C. acutatum by about 75% and completely inhibited growth of C. gloeosporioides. Benomyl did not prevent conidial germination even at 100 μg/ml, but reduced germ tube elongation at 10 and 100 μg/ml. When benomyl was applied to flower clusters on screen-house-grown plants before inoculation, disease severity was greatly reduced. Applications at 24 and 48 h, but not at 72 h, after inoculation reduced PFD severity. Application of benomyl to symptomatic petals not bearing conidia did not prevent or reduce production of inoculum. Application to petals bearing conidia reduced viability of these fungal propagules by only about 50%. The viability of appressoria on mature leaves was not affected by benomyl application. Even when appressoria on mature leaves were stimulated to germinate by treatment with flower extracts, subsequent application of benomyl did not reduce propagule numbers below original levels. Benomyl appears to act by preventing infection and early development of the fungus in petals. However, once symptoms have developed, this fungicide has only minimal effects on further disease development and spread.
Resumo:
Postbloom fruit drop (PFD) of citrus, caused by Colletotrichum acutatum, infects petals of citrus flowers and produces orange-brown lesions that induce the abscission of young fruitlets and the retention of calyces. Proper timing of fungicide applications is essential for good disease control. Different systems for timing of fungicide applications for control of PFD in a major citrus-growing region in southern São Paulo state in Brazil were evaluated from 1999 to 2002. The following programs were compared to an unsprayed control using counts of diseased flowers, persistent calyces, or fruit: (i) a phenology-based program currently recommended in Brazil with one application at early and another at peak bloom; (ii) the Florida PFD model; (iii) the postbloom fruit drop-fungicide application decision system (PFD-FAD), a new computer-assisted decision method; and (iv) grower's choice. In 1999, no disease developed, sprays applied with the phenology-based program had no effect, and the Florida PFD model saved two sprays compared with the phenology-based program. In 2000, PFD was moderate and the phenology-based and growers' choice treatments had a significantly lower number of persistent calyces and higher fruit numbers than the control, but no differences were found between those treatments and the PFD model. In 2001, PFD was severe with considerable yield loss. The PFD model, the phenology-based program, and the grower's choice reduced flower blight and the number of persistent calyces, and improved fruit yields with two to three applications, but the PFD-FAD achieved comparable yields with only one spray. In 2002, the disease was mild, with no yield loss, and the Florida PFD model and the PFD-FAD saved one spray compared with the other systems. The PFD model and the PFD-FAD were equally effective for timing fungicide applications to control PFD in Brazil. Scouting of trees is simpler with PFD-FAD; therefore, this system is recommended and should eliminate unnecessary sprays and reduce costs for growers.