939 resultados para Immune Suppressors
Resumo:
Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.
Resumo:
A field study of the immune response to the shed acute phase antigen (SAPA) of Trypanosoma cruzi was carried out in the locality of Mizque, Cochabamba department, Bolivia. Schoolchildren (266), with an average of 8.6 ± 3.6 years, were surveyed for parasitological and serological diagnosis, as well as antibodies directed against SAPA using the corresponding recombinant protein in ELISA. The antibodies against SAPA were shown in 82% of patients presenting positive serological diagnosis (IgG specific antibodies). The positive and negative predictive values were 0.88. Antibodies anti-SAPA were shown in 80.8% of the chagasic patients in the initial stage of the infection (positive IgM serology and/or positive buffy coat (BC) test) and in 81.4% of the patients in the indeterminate stage of the infection (positive IgG serology with negative BC and IgM tests). These results show that the anti-SAPA response is not only present during the initial stage of the infection (few months) but extends some years after infection
Resumo:
A longitudinal study was performed with sera and urine of patients with acquired immune deficiency syndrome (AIDS), taken before, during and after clinically Toxoplasma infection. The tested patients were followed for an average of two years. The titres of the specific IgG and IgM antibodies were measured by an indirect fluorescent antibody test (IFAT), and the appearance of circulating antigens of T. gondii was determined in 36 urine samples of 13 patients with neurotoxoplasmosis by means of the coagglutination test. The presence of T. gondii antigens in the urine of AIDS patients by this test was correlated with the immunoblot technique, with clinical symptoms and also with pathological findings. Our results indicate that the detection of T. gondii antigens in the urine of AIDS patients can be regarded as a rapid and efficient method for the diagnosis of acute toxoplasmosis
Resumo:
Schistosomiasis is a disease whose pathology is strongly related to the granulomatous reaction formed around parasite eggs trapped in host tissues. Studies have shown that the chronic intestinal form (INT) of this infection is associated with a variety of immunoregulatory mechanisms which lead to a diminished granulomatous reaction. Using an in vitro model of granuloma reaction, we show that immune complexes (IC) isolated from sera of INT patients are able to reduce granulomatous reaction developed by peripheral blood mononuclear cells (PBMC) from acute (AC), INT and hepatosplenic (HE) patients to soluble egg antigen (SEA)-conjugated polyacrylamide beads (PB-SEA). This inhibitory activity is also observed in cell proliferation assay of PBMC from INT and HE patients stimulated with SEA and adult worm antigen (SWAP). Furthermore, IC isolated from sera of patients with different clinical forms of the disease are also able to suppress INT patients PBMC reactivity. Therefore, our results show that circulating IC present in sera of patients with different clinical forms of schistosomiasis may down-regulate PBMC reactivity to parasite antigens resulting in a diminished granuloma reaction to parasite eggs
Resumo:
CEA as well as normal cross-reacting antigens (NCA) are fixed to the cell membrane via phosphatidylinositol (PI). To find out whether these antigens are internalized after antibody contact, acid pH desorption was compared to phospholipase C (PLC)-mediated cleavage of the antigen anchor. With the former procedure, marked differences in the desorbability of individual MAbs were noted, while PLC was able to cleave off surface-bound immune complexes irrespective of the MAb involved. From this it is concluded that internalization of MAb complexes of CEA/NCA, if occurring at all, is a low efficiency process.
Resumo:
Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.
Resumo:
BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.
Resumo:
Allogeneic MHC-incompatible organ or cell grafts are usually promptly rejected by immunocompetent hosts. Here we tested allogeneic beta-islet cell graft acceptance by immune or naive C57BL/6 mice rendered diabetic with streptozotocin (STZ). Fully MHC-mismatched insulin-producing growth-regulated beta-islet cells were transplanted under the kidney capsule or s.c. Although previously or simultaneously primed mice rejected grafts, STZ-treated diabetic mice accepted islet cell grafts, and hyperglycemia was corrected within 2-4 weeks in absence of conventional immunosuppression. Allogeneic grafts that controlled hyperglycemia expressed MHC antigens, were not rejected for >100 days, and resisted a challenge by allogeneic skin grafts or multiple injections of allogeneic cells. Importantly, the skin grafts were rejected in a primary fashion by the grafted and corrected host, indicating neither tolerization nor priming. Such strictly extralymphatic cell grafts that are immunologically largely ignored should be applicable clinically.
Resumo:
Introduction: Epstein-Barr Virus(EBV) has been repeatedly associatedwith multiple sclerosis (MS). Wehave previously shown that there is ahigh peripheral as well as intrathecalactivation of EBV-, but not cytomegalovirus(CMV)-specific CD8+ Tcells, early in the course of MS,strengthening the link between EBVand MS. However, the trigger of thisincreased EBV-specific CD8+ T cellresponse remains obscure. It could resultfrom a higher EBV viral load. Alternatively,it could be due to an intrinsicallydeficient EBV-specificCTL response, cytotoxic granulesmediated.Thus, we performed anin-depth study of the phenotype of exvivo EBV- and CMV-specific CD8+T cells in MS patients and control patients,assessing their cytotoxic activity.Methods:We analyzed the profileof cytotoxic granules in EBV- andCMV-specific CD8+ T cells in a cohortof 13 early MS patients, 20 lateMS, 30 other neurological diseases(OND) patients and 7 healthy controlsubjects. Ex vivo analysis of EBV- orCMV-specific CD8+ T cells was performedusing HLA class I/tetramercomplexes coupled to CCR7 andCD57 markers in conjunction withperforin, granzymes A, BandKstaining.In a sub-cohort of MS patientsand controls, cytotoxic activity ofEBV- and CMV-specific CD8+ Tcells was investigated using a functionalCFSE CTL assay. Results: UsingHLA Class I tetramers for EBVand CMV, we found that the frequencyof EBV- or CMV-specificCD8+ T cells were similar in all studysubjects. Most of EBV- and CMVspecificCD8+Tcells were highly differentiated(CCR7-) and a variousproportion expressed the exhaustionmarker CD57. MS and OND patientshad increased perforin expression inEBV-specific CD8+ T cells. Most importantly,we found that MS patientswith longer disease duration tended tohave lower CTL cytotoxicity as comparedto earlyMSpatients or controls.Conclusions: Effector EBV-specificCD8+ T cells are increased in earlyMS, however their cytotoxic granuleprofile does not seem to be fully alteredand the cytotoxic activity ofthese cells is normal. However, thecytotoxic activity of CTL decreasedin late MS patients suggesting an exhaustionof EBV-specific CD8+ Tcells possibly due to EBV reactivation.This work was supported by theSwiss National Foundation PP00B3-124893, the Swiss Society for MS,and the Biaggi Foundation to RADP.
Resumo:
Much has been learned about how HIV-induced immune dysfunction contributes to B cell hyperactivation, and potentially, to the pathogenesis of AIDS-lymphoma. However, further studies are needed to fully understand how HIV infection and immune dysfunction promote B cell hyperactivation and the development/growth of AIDS-lymphoma. In particular, studies are needed to define the role of HHV8 vIL6, IL6 receptor-expression, and lymphocyte surface stimulatory molecules, in promoting B cell hyperactivation or lymphoma cell growth.
Resumo:
Efforts to characterize HIV-1 polymorphism and anti-HIV immune response are being made in areas where anti-HIV/AIDS vaccines are to be employed. Anti-HIV-1 humoral immune response is being studied in infected individuals resident in Rio de Janeiro, in distinct cohorts involving recent seroconvertors, pregnant women or intravenous drug users (IDU). Comparative analyses of specificity of antibody response towards epitopes important for anti-HIV-1 immune response indicate quantitative differences between cohorts, with an exceptionally strong response in IDUs and weakest response in pregnant women. However, a comparative analysis between pregnant women cohorts from Rio de Janeiro and Rio Grande do Sul indicated an even lower response (with exception of the anti-V3-C clade peptide recognition) for the southern cohort. Studies analysing the immune function of the humoral response indicate a quite elevated occurrence of antibodies capable of neutralizing heterologous primary HIV-1 isolates from Rio de Janeiro. Attempts to correlate seroreactivity with HIV-1 neutralization with respect to HIV-1 polymorphism were not very successfull: while the Brazilian B clade B" variant could be recognized by binding assays, no significant distinction of HIV-1 clades/variants was observed in viral neutralization assays.
Resumo:
The immunogenicity of anti-malaria synthetic vaccine SPf66 was tested in a region of the Colombian middle Atrato river. The specific serum antibodies against SPf66 were quantified in vaccinees and placebo injected controls for a two-years period post-immunization. The frequency of individuals showing seroconversion of anti-SPf66 antibodies three months after completion of the immunization schedule was higher in vaccinees than in controls (52.7% and 25.5%, respectively, p<0.01). However, an over than four-fold increase of the specific anti-SPf66 antibody titers was observed only in 1.4% of vaccinees and 0.2% of the controls (p<0.01). The anti-SPf66 antibody titers augmented in vaccinees from first dose application to three months after the third dose, continuously decreasing thereafter to reach below baseline values two years after completion of the immunization schedule. The results show that SPf66 has very low immunogenicity and induces a short term humoral immune response (six months).
Resumo:
Defensins and cathelicidins are anti-microbial peptides (AMPs) that act as natural antibiotics and are part of the innate immune defence in many species. We consider human defensins and LL37, the only human member of the cathelicidin family. In particular, we refer to the human alpha-defensins called human neutrophil peptides (HNP1 through 4), which are produced by neutrophils, HD5 and HD6, mainly expressed in Paneth cells of intestine, the human beta-defensins HBD1, HBD2 and HBD3, synthesized by epithelial cells and LL37, which is located in granulocytes, but is also produced by epithelial cells of the skin, lungs, and gut. In the last years, the study of AMPs activity and regulation has allowed to understand the important role of these peptides not only in the innate defence mechanisms against bacteria, viruses, fungi, but also in the regulation of immune cell activation and migration. Complementary studies have disclosed a role for AMPs in modulating many physiological processes that involve non-immune cells, such as activation of wound healing, angiogenesis, cartilage remodeling. Due to the pleiotropic tasks of these peptides, many of them are now being discovered to contribute to immune pathology of chronic diseases that affect skin, gut, joints; this is supported by many examples of immune-mediated pathologies in which their expression is disregulated. In this article we review the current literature that suggests a role for human defensins and LL37 in pathogenic mechanisms of several chronic diseases that are considered of auto-immune or auto-inflammatory origin.
Resumo:
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.