929 resultados para IRAP markers
Resumo:
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F-ST ) among the populations. The Mantel test showed that two types of matrices of D and F-ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.
Resumo:
Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei's unbiased genetic distance (D) and fixation index (F-ST) between the populations. The Mantel test showed that two types of matrices of D and FST were highly correlated, whether from RAPD or ISSR data, r=0.9310 (P = 0.008) and 0.9313 (P=0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.
Resumo:
Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global theta (ST) (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise theta (ST) comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.
Resumo:
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F-2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with "broad and thin blade" characteristics and another with "long and narrow blade" characteristics, were applied in the hybridization to yield the F-2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for "FL," explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait "FW," accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.
Resumo:
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F, cross family (Laminaria longissima Aresch. x L. japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.
Resumo:
Twenty microsatellite markers (Po1, Po13, Po33, Po35, Po42, Po48, Po56, Po89, Po91, kop6, kop7, kop8, kop12, kop15, kop18, kop21, kop22, kop23, kop26, Po-strl) were used to assess the meiogynogenetic and mitogynogenetic stocks of the left-eyed flounder, Paralichthys olivaceus, which were derived from single pair crossing. Twelve of the 20 loci utilized showed heterozygosity in the female and were mapped in relation to their centromeres in the meiogynogenetic diploid flounder. Microsatellite-centromere map distance, calculated under the assumption of complete interference, ranged from 15.8 cM for kop22 to 50 cM for Po13, Po56 and Po89. Excluding the kop22, the heterozygosities of the rest of the loci were close to 100%, suggesting the occurrence of near complete interference on the chromosome arms that carried these loci. In the mitogynogenetic diploid flounder, each individual showed exact homozygousity and the segregation profiles did not deviate from the Mendelian 1: 1 pattern. The results indicated that there was no lethal gene linked with the loci analyzed. Such high interference accounted for the high recombination rates and large map distances. The Po13 and Po56 loci, Po91 and kop18 loci, kop15 and kop21 loci are tightly linked on the same chromosome arm in pairs.
Resumo:
Molecular markers were used to identify and assess cultivars of Laminaria Lamx. and to delineate their phylogenetic relationships. Random amplified polymorphic DNA (RAPD) analysis was used for detection. After screening, 11 primers were selected and they yielded 133 bands in all, of which approximately 99.2% were polymorphic. The genetic distances between gametophytes ranged from 0.412 to 0.956. Two clusters were formed with the unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on the simple matching coefficient. All cultivars of Laminaria japonica Aresch. used for breeding in China fell into one cluster. L. japonica from Japan, L. saccharina (L.) Lam., and L. angustata Kjellm. formed the other cluster and showed higher genetic variation than L. japonica from China. Nuclear ribosomal DNA (rDNA) sequences, including internal transcribed spacers (ITS1 and ITS2) were studied and aligned. The nucleotides of the sequences ranged from 634 to 668, with a total of 692 positions including TTS1, ITS2, and the 5.8S coding region. The phylogenetic tree obtained by the neighbor-joining method favored, to some extent, the results revealed by RAPD analysis. The present study indicates that RAPD and ITS analyses could be used to identify and assess Laminaria germplasm and to distinguish some species and, even intraspecies, in Laminaria.
Resumo:
We constructed genetic linkage maps for the bay scallop Argopecten irradians using AFLP and microsatellite markers and conducted composite interval mapping (CIM) of body-size-related traits. Three hundred seventeen AFLP and 10 microsatellite markers were used for map construction. The female parent map contained 120 markers in 15 linkage groups, spanning 479.6 cM with an average interval of 7.0 cM. The male parent map had 190 markers in 17 linkage groups, covering 883.8 cM at 7.2 cM per marker. The observed coverage was 70.4% for the female and 81.1% for the male map. Markers that were distorted toward the same direction were closely linked to each other on the genetic maps, suggesting the presence of genes important for survival. Six size-related traits, shell length, shell height, shell width, total weight, soft tissue weight, and shell weight, were measured for QTL mapping. The size data were significantly correlated with each other. We subjected the data, log transformed firstly, to a principle component analysis and use the first principle component for QTL mapping. CIM analysis revealed one significant QTL (LOD=2.69, 1000 permutation, P<0.05) in linkage group 3 on the female parent map. The mapping of size-related QTL in this study raises the possibility of improving the growth of bay scallops through marker-assisted selection. (c) 2007 Published by Elsevier B.V.
Resumo:
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.
Resumo:
Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H (E)) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei's gene diversity (H (E)) from 0.179 to 0.289 and Shannon's indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei's genetic diversity (G (ST) = 0.256) and AMOVA analysis (Phi (st) = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.
Resumo:
Genetic variation of 10 Rhodiola alsia ( Crassulaceae) populations from the Qinghai - Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai - Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.
Resumo:
It has been suggested that endothelial apoptosis is a primary lesion in the pathogenesis of thrombotic thrombocytopenic purpura (TTP). We tested this hypothesis by examining the phenotypic signatures of endothelial microparticles (EMP) in TTP patients. In addition, the effect of TTP plasma on microvascular endothelial cells (MVEC) in culture was further delineated. EMP released by endothelial cells (EC) express markers of the parent EC; EMP released in activation carry predominantly CD54 and CD62E, while those in apoptosis CD31 and CD105. We investigated EMP release in vitro and in TTP patients. Following incubation of MVEC with TTP plasma, EMP and EC were analysed by flow cytometry for the expression of CD31, CD51, CD54, CD62E, CD105, CD106 and von Willebrand factor (VWF) antigen. EMP were also analysed in 12 TTP patients. In both EC and EMP, CD62E and CD54 expression were increased 3- to 10-fold and 8- to 10-fold respectively. However, CD31 and CD105 were reduced 40-60% in EC but increased twofold in EMP. VWF expression was found in 55 +/- 15% of CD62E(+) EMP. Markers of apoptosis were negative. In TTP patients, CD62E(+) and CD31(+)/CD42b(-) EMP were markedly elevated, and preceded and correlated well with a rise in platelet counts and a fall in lactate dehydrogenase. CD62E(+) EMP (60 +/- 20%) co-expressed VWF and CD62E. The ratio of CD31(+)/42b(-) to CD62E(+) EMP exhibited a pattern consistent with activation. In conclusion, our studies indicate endothelial activation in TTP. EMP that co-express VWF and CD62E could play a role in the pathogenesis of TTP.
Resumo:
AIM: Fourteen urinary nucleosides, primary degradation products of tRNA, were evaluated to know the potential as biological markers for patients with colorectal cancer.