975 resultados para INTERMEDIATE ENERGIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model,he fusion dynamics of symmetric reaction systems are investigated systematically. Calculations show that the number of nucleon transfer in the neck region is appreciably dependent on the incident energies, but strongly on he reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions 58Ni+58Niand 64Ni+64Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of the neutron to proton in the neck region at initial collision stage is observed and obvious for the latter system, which reduces the fusion barrier of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared with the available experimental data.