821 resultados para INTAKE
Resumo:
BACKGROUND AND AIM: Retinal vessel abnormalities are associated with cardiovascular disease (CVD) risk. To date, there are no trials investigating the effect of dietary factors on the retinal microvasculature. This study examined the dose response effect of fruit and vegetable (FV) intake on retinal vessel caliber in overweight adults at high CVD risk.
METHODS AND RESULTS: Following a 4 week washout period, participants were randomized to consume either 2 or 4 or 7 portions of FV daily for 12 weeks. Retinal vessel caliber was measured at baseline and post-intervention. A total of 62 participants completed the study. Self-reported FV intake indicated good compliance with the intervention, with serum concentrations of zeaxanthin and lutein increasing significantly across the groups in a dose-dependent manner (P for trend < 0.05). There were no significant changes in body composition, 24-h ambulatory blood pressure or fasting blood lipid profiles in response to the FV intervention. Increasing age was a significant determinant of wider retinal venules (P = 0.004) whereas baseline systolic blood pressure was a significant determinant of narrower retinal arterioles (P = 0.03). Overall, there was no evidence of any short-term dose-response effect of FV intake on retinal vessel caliber (CRAE (P = 0.92) or CRVE (P = 0.42)).
CONCLUSIONS: This study demonstrated no effect of increasing FV intake on retinal vessel caliber in overweight adults at high risk of developing primary CVD.
Resumo:
Objective: To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes. Design: Prospective observational study. Setting: UK tertiary neonatal unit. Participants: Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39) Main outcome measures: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants. Results: Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=−0.58, p=0.01). Conclusions: Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms.
Resumo:
This cross-sectional study investigates whether calcium intakes from dairy and non-dairy sources, and absolute intakes of various dairy products, are associated with periodontitis. The calcium intake (mg/day) of 135 older Danish adults was estimated by a diet history interview and divided into dairy and non-dairy calcium. Dairy food intake (g/day) was classified into four groups: milk, cheese, fermented foods and other foods. Periodontitis was defined as the number of teeth with attachment loss ≥3 mm. Intakes of total dairy calcium (Incidence-rate ratio (IRR) = 0.97; p = 0.021), calcium from milk (IRR = 0.97; p = 0.025) and fermented foods (IRR = 0.96; p = 0.03) were inversely and significantly associated with periodontitis after adjustment for age, gender, education, sucrose intake, alcohol consumption, smoking, physical activity, vitamin D intake, heart disease, visits to the dentist, use of dental floss and bleeding on probing, but non-dairy calcium, calcium from cheese and other types of dairy food intakes were not. Total dairy foods (IRR = 0.96; p = 0.003), milk (IRR = 0.96; p = 0.028) and fermented foods intakes (IRR = 0.97; p = 0.029) were associated with reduced risk of periodontitis, but cheese and other dairy foods intakes were not. These results suggest that dairy calcium, particularly from milk and fermented products, may protect against periodontitis. Prospective studies are required to confirm these findings.
Resumo:
Backgroung - Bariatric surgery is indicated as the most effective treatment for morbid obesity; the Roux-en-Y gastric bypass (RYGB) is considered the procedure of choice. However, nutritional deficiency may occur in the postoperative period as a result of reduced gastric capacity and change in nutrients absorption in the gastrointestinal tract. The prescription of vitamin and mineral supplementation is a common practice after RYGB; however, it may not be sufficient to prevent micronutrient deficiencies. The aim of this study was to quantify the micronutrient intake in patients undergoing RYGB and verify if the intake of supplementation would be enough to prevent nutritional deficiencies. Methods - The study was conducted on 60 patients submitted to RYGB. Anthropometric, analytical, and nutritional intake data were assessed preoperatively and 1 and 2 years postoperatively. The dietary intake was assessed using 24-h food recall; the values of micronutrients evaluated (vitamin B12, folic acid, iron, and calcium) were compared to the dietary reference intakes (DRI). Results - There were significant differences (p < 0.05) between excess weight loss at the first and second year (69.9 ± 15.3 vs 9.6 ± 62.9 %). In the first and second year after surgery, 93.3 and 94.1 % of the patients, respectively, took the supplements as prescribed. Micronutrient deficiencies were detected in the three evaluation periods. At the first year, there was a significant reduction (p < 0.05) of B12, folic acid, and iron intake. Conclusions - Despite taking vitamin and mineral supplementation, micronutrient deficiencies are common after RYGB. In the second year after surgery, micronutrient intake remains below the DRI.
Resumo:
Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
Background: Diet and physical activity (PA) are recognized as important factors to prevent abdominal obesity (AO), which is strongly associated with chronic diseases. Some studies have reported an inverse association between milk consumption and AO. Objective: This study examined the association between milk intake, PA and AO in adolescents. Methods: A cross-sectional study was conducted with 1209 adolescents, aged 15–18 from the Azorean Archipelago, Portugal in 2008. AO was defined by a waist circumference at or above the 90th percentile. Adolescent food intake was measured using a semi-quantitative food frequency questionnaire, and milk intake was categorized as ‘low milk intake’ (<2 servings per day) or ‘high milk intake’ ( 2 servings per day). PA was assessed via a self-report questionnaire, and participants were divided into active (>10 points) and low-active groups ( 10 points) on the basis of their reported PA. They were then divided into four smaller groups, according to milk intake and PA: (i) low milk intake/low active; (ii) low milk intake/active; (iii) high milk intake/low active and (iv) high milk intake/active. The association between milk intake, PA and AO was evaluated using logistic regression analysis, and the results were adjusted for demographic, body mass index, pubertal stage and dietary confounders. Results: In this study, the majority of adolescents consumed semi-skimmed or skimmed milk (92.3%). The group of adolescents with high level of milk intake and active had a lower proportion of AO than did other groups (low milk intake/low active: 34.2%; low milk intake/active: 26.9%; high milk intake/low active: 25.7%; high milk intake/active: 21.9%, P = 0.008). After adjusting for confounders, low-active and active adolescents with high levels of milk intake were less likely to have AO, compared with low-active adolescents with low milk intake (high milk intake/low active, odds ratio [OR] = 0.412, 95% confidence intervals [CI]: 0.201– 0.845; high milk intake/active adolescents, OR = 0.445, 95% CI: 0.235–0.845).Conclusion: High milk intake seems to have a protective effect on AO, regardless of PA level
Resumo:
The effect of pre-meal tomato intake in the anthropometric indices and blood levels of triglycerides, cholesterol, glucose, and uric acid of a young women population (n=35, 19.6 ± 1.3 years) was evaluated. During 4 weeks, daily, participants ingested a raw ripe tomato (~90 g) before lunch. Their anthropometric and biochemical parameters were measured repeatedly during the follow-up time. At the end of the 4 weeks, significant reductions were observed on body weight (-1.09 ± 0.12 kg on average), % fat (-1.54 ± 0.52%), fasting blood glucose (-5.29 ± 0.80 mg/dl), triglycerides (-8.31 ± 1.34 mg/dl), cholesterol (-10.17 ± 1.21 mg/ dl), and uric acid (-0.16 ± 0.04 mg/dl) of the participants. The tomato pre-meal ingestion seemed to interfere positively in body weight, fat percentage, and blood levels of glucose, triglycerides, cholesterol, and uric acid of the young adult women that participated in this study.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.
Resumo:
BACKGROUND: Only a few studies have explored the relation between coffee and tea intake and head and neck cancers, with inconsistent results. METHODS: We pooled individual-level data from nine case-control studies of head and neck cancers, including 5,139 cases and 9,028 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI), adjusting for potential confounders. RESULTS: Caffeinated coffee intake was inversely related with the risk of cancer of the oral cavity and pharynx: the ORs were 0.96 (95% CI, 0.94-0.98) for an increment of 1 cup per day and 0.61 (95% CI, 0.47-0.80) in drinkers of >4 cups per day versus nondrinkers. This latter estimate was consistent for different anatomic sites (OR, 0.46; 95% CI, 0.30-0.71 for oral cavity; OR, 0.58; 95% CI, 0.41-0.82 for oropharynx/hypopharynx; and OR, 0.61; 95% CI, 0.37-1.01 for oral cavity/pharynx not otherwise specified) and across strata of selected covariates. No association of caffeinated coffee drinking was found with laryngeal cancer (OR, 0.96; 95% CI, 0.64-1.45 in drinkers of >4 cups per day versus nondrinkers). Data on decaffeinated coffee were too sparse for detailed analysis, but indicated no increased risk. Tea intake was not associated with head and neck cancer risk (OR, 0.99; 95% CI, 0.89-1.11 for drinkers versus nondrinkers). CONCLUSIONS: This pooled analysis of case-control studies supports the hypothesis of an inverse association between caffeinated coffee drinking and risk of cancer of the oral cavity and pharynx. IMPACT: Given widespread use of coffee and the relatively high incidence and low survival of head and neck cancers, the observed inverse association may have appreciable public health relevance.
Resumo:
The Internet and new communication technologies are deeply affecting healthcare systems and the provision of care. The purpose of this article is to evaluate the possibility that cyberhealth, via the development of widespread easy access to wireless personal computers, tablets and smartphones, can effectively influence intake of medication and long-term medication adherence, which is a complex, difficult and dynamic behaviour to adopt and to sustain over time. Because of its novelty, the impact of cyberhealth on drug intake has not yet been well explored. Initial results have provided some evidence, but more research is needed to determine the impact of cyberhealth resources on long-term adherence and health outcomes, its user-friendliness and its adequacy in meeting e-patient needs. The purpose of such Internet-based interventions, which provide different levels of customisation, is not to take over the roles of healthcare providers; on the contrary, cyberhealth platforms should reinforce the alliance between healthcare providers and patients by filling time-gaps between visits and allowing patients to upload and/or share feedback material to be used during the visits. This shift, however, is not easily endorsed by healthcare providers, who must master new eHealth skills, but healthcare systems have a unique opportunity to invest in the Internet and to use this powerful tool to design the future of integrated care. Before this can occur, however, important issues must be addressed and resolved, for example ethical considerations, the scientific quality of programmes, reimbursement of activity, data security and the ownership of uploaded data.
Resumo:
Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Resumo:
Among the environmental factors that can affect food intake is the extent of dietary variety available in the environment. Numerous studies have demonstrated that variety in a meal can increase the amount of food consumed in humans, rats, and other species. A physiological mechanism that has been demonstrated to affect food intake is the gut peptide cholecystokinin (CCK) which is released from the upper small intestine during the ingestion of food. Peripherally administered CCK has a robust inhibitory effect on the intake of a single-food meal. Thus, dietary variety and CCK both affect meal size, with dietary variety increasing intake and CCK decreasing intake. This raises the question ofhow dietary variety and CCK might interact to affect meal size. Previous studies of CCK's effects have focused on situations in which only one food was available for consumption. However, in an animal's natural environment it would frequently occur that the animal would come across a number of foods either simultaneously or in quick succession, thus providing the animal access to a variety of foods during a meal. Accordingly, the effect ofCCK on food intake in single-food and multiple-food meals was examined. It was found that food intake was greater in multiple-food than in single-food meals provided that foods in the multiplefood meal were presented either simultaneously or in increasing order of preference. When foods in the multiple-food meal were presented in decreasing order of preference, intake was similar to that observed in single-food meals. In addition, it was found that CCK inhibited food intake in a dose-dependent manner, and that its effects on food intake were similar regardless of meal type. Therefore, the inhibitory effects ofCCK were not diminished when a variety of foods were available for consumption. Furthermore, the finding that CCK did not differentially affect the intake of the two types of meals does not provide support for the recent-foods hypothesis which postulates that CCK decreases food intake by reducing the palatability of only recently consumed foods. However, it is consistent with the all-foods hypothesis, which predicts that CCK reduces food intake by decreasing the palatability of all foods. The 600 ng/kg dose of the CCK^-antagonist lorglumide significantly antagonized the inhibitory effect of exogenous CCK on food intake, and the magnitude of this effect was similar for both types of meal. These results suggest that exogenous CCK inhibits food intake through the activation ofCCK^ receptors. However, when administered by itself, the 600^ig/kg dose of lorglumide did not increase food intake in either single-food or multiple-food meals, suggesting that peripheral endogenous CCK may not play a major role in the control of food intake.
Resumo:
Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.
Resumo:
Consuming low-fat milk (LFM) after resistance training leads to improvements in body composition. Habitual aerobic exercise and dairy intake are relatively easy lifestyle modifications that could benefit a population at risk for becoming obese. Thus, the purpose of this study was to investigate combining increased LFM intake with endurance exercise on body composition, blood-lipid profile and metabolic markers. 40 young males were randomized into four groups: one ingesting 750mL LFM immediately post-exercise, the other 6hrs post-exercise; and two isocaloric carbohydrate groups ingesting at the two different times. Participants completed a 12 week endurance-training program (cycling 1 hour/day at ~60%VO2peak, 5 days/week). 23 participants completed the study. Increases in lean mass (p < 0.05), and decreases in anti-inflammatory marker adiponectin (p < 0.05) were seen in all groups. No other significant changes were observed. Future analyses should focus on longer duration exercise and include a larger sample.