869 resultados para Hyperbolic Boundary-Value Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject under investigation concerns the steady surface wave patterns created by small concentrated disturbances acting on a non-uniform flow of a heavy fluid. The initial value problem of a point disturbance in a primary flow having an arbitrary velocity distribution (U(y), 0, 0) in a direction parallel to the undisturbed free surface is formulated. A geometric optics method and the classical integral transformation method are employed as two different methods of solution for this problem. Whenever necessary, the special case of linear shear (i.e. U(y) = 1+ϵy)) is chosen for the purpose of facilitating the final integration of the solution.

The asymptotic form of the solution obtained by the method of integral transforms agrees with the leading terms of the solution obtained by geometric optics when the latter is expanded in powers of small ϵ r.

The overall effect of the shear is to confine the wave field on the downstream side of the disturbance to a region which is smaller than the wave region in the case of uniform flows. If U(y) vanishes, and changes sign at a critical plane y = ycr (e.g. ϵycr = -1 for the case of linear shear), then the boundary of this asymmetric wave field approaches this critical vertical plane. On this boundary the wave crests are all perpendicular to the x-axis, indicating that waves are reflected at this boundary.

Inside the wave field, as in the case of a point disturbance in a uniform primary flow, there exist two wave systems. The loci of constant phases (such as the crests or troughs) of these wave systems are not symmetric with respect to the x-axis. The geometric optics method and the integral transform method yield the same result of these loci for the special case of U(y) = Uo(1 + ϵy) and for large Kr (ϵr ˂˂ 1 ˂˂ Kr).

An expression for the variation of the amplitude of the waves in the wave field is obtained by the integral transform method. This is in the form of an expansion in small ϵr. The zeroth order is identical to the expression for the uniform stream case and is thus not applicable near the boundary of the wave region because it becomes infinite in that neighborhood. Throughout this investigation the viscous terms in the equations of motion are neglected, a reasonable assumption which can be justified when the wavelengths of the resulting waves are sufficiently large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new, compact derivation of state-space formulae for the so-called discretisation-based solution of the H∞ sampled-data control problem. Our approach is based on the established technique of continuous time-lifting, which is used to isometrically map the continuous-time, linear, periodically time-varying, sampled-data problem to a discretetime, linear, time-invariant problem. State-space formulae are derived for the equivalent, discrete-time problem by solving a set of two-point, boundary-value problems. The formulae accommodate a direct feed-through term from the disturbance inputs to the controlled outputs of the original plant and are simple, requiring the computation of only a single matrix exponential. It is also shown that the resultant formulae can be easily re-structured to give a numerically robust algorithm for computing the state-space matrices. © 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

数值模式是潮波研究的一种有利手段,但在研究中会面临各种具体问题,包括开边界条件的确定、底摩擦系数和耗散系数的选取等。数据同化是解决这些问题的一种途径,即利用有限数量的潮汐观测资料对潮波进行最优估计,其根本目的是迫使模型预报值逼近观测值,使模式不要偏离实际情况太远。本文采用了一种优化开边界方法,沿着数值模型的开边界优化潮汐水位信息,目的是设法使数值解在动力约束的意义下接近观测值,获得研究区域的潮汐结果。边界值由指定优化问题的解来定,以提高模拟区域的潮汐精度,最优问题的解是基于通过开边界的能量通量的变化,处理开边界处的观测值与计算值之差的最小化。这里提供了辐射型边界条件,由Reid 和Bodine(本文简称为RB)推导,我们将采用的优化后的RB方法(称为ORB)是优化开边界的特殊情况。 本文对理想矩形海域( E- E, N- N, 分辨率 )进行了潮波模拟,有东部开边界,模式采用ECOM3D模式。对数据结果的误差分析采用,振幅平均偏差,平均绝对偏差,平均相对误差和均方根偏差四个值来衡量模拟结果的好坏程度。 需要优化入开边界的解析潮汐值本文采用的解析解由方国洪《海湾的潮汐与潮流》(1966年)方法提供,为验证本文所做的解析解和方文的一致,本文做了其第一个例子的关键值a,b,z,结果与其结果吻合的相当好。但略有差别,分析的可能原因是两法在具体迭代方案和计算机保留小数上有区别造成微小误差。另外,我们取m=20,得到更精确的数值,我们发现对前十项的各项参数值,取m=10,m=20各项参数略有改进。当然我们可以获得m更大的各项参数值。 同时为了检验解析解的正确性讨论m和l变化对边界值的影响,结果指出,增大m,m=20时,u的模最大在本身u1或u2的模的6%;m=100时,u的模最大在本身u1或u2的模的4%;m再增大,m=1000时,u的模最大在本身u1或u2的模的4%,改变不大。当l<1时, =0处u的模最大为2。当l=1时, =0处u的模最大为0.1,当l>1时,l越大,u的模越小,当l=10时,u的模最大为0.001,可以认为为0。 为检验该优化方法的应用情况,我们对理想矩形区域进行模拟,首先将本文所采用的优化开边界方法应用于30m的情况,在开边界优化入开边界得出模式解,所得模拟结果与解析解吻合得相当好,该模式解和解析解在整个区域上,振幅平均绝对偏差为9.9cm,相位平均绝对偏差只有4.0 ,均方根偏差只有13.3cm,说明该优化方法在潮波模型中有效。 为验证该优化方法在各种条件下的模拟结果情况,在下面我们做了三类敏感性试验: 第一类试验:为证明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,我们来比较ORB条件与RB条件的优劣,我们模拟用了两个不同的摩擦系数,k分别为:0,0.00006。 结果显示,针对不同摩擦系数,显示在开边界上使用ORB条件的解比使用RB条件的解无论是振幅还是相位都有显著改善,两个试验均方根偏差优化程度分别为84.3%,83.7%。说明在开边界上使用优化方法相比于没有采用优化方法的模拟解更接近于解析解,大大提高了模拟水平。上述的两个试验得出, k=0.00006优化结果比k=0的好。 第二类试验,使用ORB条件确定优化开边界情况下,在东西边界加入出入流的情况,流考虑线性和非线性情况,结果显示,加入流的情况,潮汐模拟的效果降低不少,流为1Sv的情况要比5Sv的情况均方根偏差相差20cm,而不加流的情况只有0.2cm。线性流和非线性流情况两者模式解相差不大,振幅,相位各项指数都相近, 说明流的线性与否对结果影响不大。 第三类试验,不仅在开边界使用ORB条件,在模式内部也使用ORB条件,比较了内部优化和不优化情况与解析解的偏差。结果显示,选用不同的k,振幅都能得到很好的模拟,而相位相对较差。另外,在内部优化的情况下,考虑不同的k的模式解, 我们选用了与解析解相近的6个模式解的k,结果显示,不同的k,振幅都能得到很好的模拟,而相位较差。 总之,在开边界使用ORB条件比使用RB条件好,振幅相位都有大幅度改进,在加入出入流情况下,流的大小对模拟结果有影响,但线形流和非线性流差别不大。内部优化的结果显示,模式采用不同的k都能很好模拟解析解的振幅。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions.