895 resultados para Human Parietal Cortex


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blindsight is a phenomenon in which human patients with damage to striate cortex deny any visual sensation in the resultant visual field defect but can nonetheless detect and localize stimuli when persuaded to guess. Although monkeys with striate lesions have also been shown to exhibit some residual vision, it is not yet clear to what extent the residual capacities in monkeys parallel the phenomenon of human blindsight. To clarify this issue, we trained two monkeys with unilateral lesions of striate cortex to make saccadic eye movements to visual targets in both hemifields under two conditions. In the condition analogous to clinical perimetry, they failed to initiate saccades to targets presented in the contralateral hemifield and thus appeared "blind." Only in the condition where the fixation point was turned off simultaneously with the onset of the target--signaling the animal to respond at the appropriate time--were monkeys able to localize targets contralateral to the striate lesion. These results indicate that the conditions under which residual vision is demonstrable are similar for monkeys with striate cortex damage and humans with blindsight.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human neuronal protein 22 (hNP22) is a novel neuron-specific protein featuring numerous motifs previously described in cytoskeleton-associating and signaling proteins. Because previous studies have supported abnormalities in neuronal cytoarchitecture and/or development in the schizophrenia brain, we examined the expression of hNP22 in the anterior cingulate cortex, the hippocampus and the prefrontal cortex of schizophrenic and normal control postmortem brains using high-sensitive immunohistochemistry. Seven schizophrenic and seven age- and sex-matched control brains were examined. The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V (p = .020) and layer VI (p = .022) of the anterior cingulate cortex of schizophrenic brain compared with controls. In contrast, there were no significant changes observed in the hippocampus and the prefrontal cortex. These results suggest that altered expression of hNP22 may be associated with modifications in neuronal cytoarchitecture leading to dysregulation of neural signal transduction in the anterior cingulate cortex of the schizophrenia brain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review recent findings that, using fractal analysis, have demonstrated systematic regional and species differences in the branching complexity of neocortical pyramidal neurons. In particular, attention is focused on how fractal analysis is being applied to the study of specialization in pyramidal cell structure during the evolution of the primate cerebral cortex. These studies reveal variation in pyramidal cell phenotype that cannot be attributed solely to increasing brain volume. Moreover, the results of these studies suggest that the primate cerebral cortex is composed of neurons of different structural complexity. There is growing evidence to suggest that regional and species differences in neuronal structure influence function at both the cellular and circuit levels. These data challenge the prevailing dogma for cortical uniformity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were downregulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using magnetoencephalography, we studied the spatiotemporal properties of cortical responses in terms of event-related synchronization and event-related desynchronization to a range of stripe patterns in subjects with no neurological disorders. These stripes are known for their tendency to induce a range of abnormal sensations, such as illusions, nausea, dizziness, headache and attacks of pattern-sensitive epilepsy. The optimal stimulus must have specific physical properties, and maximum abnormalities occur at specific spatial frequency and contrast. Despite individual differences in the severity of discomfort experienced, psychophysical studies have shown that most observers experience some degree of visual anomaly on viewing such patterns. In a separate experiment, subjects reported the incidence of illusions and discomfort to each pattern. We found maximal cortical power in the gamma range (30-60 Hz) confined to the region of the primary visual cortex in response to patterns of 2-4 cycles per degree, peaking at 3 cycles per degree. This coincides with the peak of mean illusions and discomfort, also maximal for patterns of 2-4 cycles per degree. We show that gamma band activity in V1 is a narrow band function of spatial frequency. We hypothesize that the intrinsic properties of gamma oscillations may underlie visual discomfort and play a role in the onset of seizures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates ? (4–7 Hz), a (7–14 Hz), ß (15–25 Hz), and ? (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.