391 resultados para Homorphic encryption
Resumo:
Real-world cryptographic protocols such as the widely used Transport Layer Security (TLS) protocol support many different combinations of cryptographic algorithms (called ciphersuites) and simultaneously support different versions. Recent advances in provable security have shown that most modern TLS ciphersuites are secure authenticated and confidential channel establishment (ACCE) protocols, but these analyses generally focus on single ciphersuites in isolation. In this paper we extend the ACCE model to cover protocols with many different sub-protocols, capturing both multiple ciphersuites and multiple versions, and define a security notion for secure negotiation of the optimal sub-protocol. We give a generic theorem that shows how secure negotiation follows, with some additional conditions, from the authentication property of secure ACCE protocols. Using this framework, we analyse the security of ciphersuite and three variants of version negotiation in TLS, including a recently proposed mechanism for detecting fallback attacks.
Resumo:
Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. We demonstrate the practicality of post-quantum key exchange by constructing cipher suites for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security. Our approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum attackers, while authentication can be provided using RSA keys that are issued by today's commercial certificate authorities, smoothing the path to adoption. Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE cipher suites integrated into the Open SSL library and using the Apache web server on a 2-core desktop computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB payload. Compared to elliptic curve Diffie-Hellman, this means an 8 KiB increased handshake size and a reduction in throughput of only 21%. This demonstrates that provably secure post-quantum key-exchange can already be considered practical.
Resumo:
In this paper, we show implementation results of various algorithms that sort data encrypted with Fully Homomorphic Encryption scheme based on Integers. We analyze the complexities of sorting algorithms over encrypted data by considering Bubble Sort, Insertion Sort, Bitonic Sort and Odd-Even Merge sort. Our complexity analysis together with implementation results show that Odd-Even Merge Sort has better performance than the other sorting techniques. We observe that complexity of sorting in homomorphic domain will always have worst case complexity independent of the nature of input. In addition, we show that combining different sorting algorithms to sort encrypted data does not give any performance gain when compared to the application of sorting algorithms individually.
Resumo:
A public key cryptosystem is proposed, which is based on the assumption that finding the square root of an element in a large finite ring is computationally infeasible in the absence of a knowledge of the ring structure. The encryption and decryption operations are very fast, and the data expansion is 1:2.
Resumo:
Content delivery networks (CDNs) are an essential component of modern website infrastructures: edge servers located closer to users cache content, increasing robustness and capacity while decreasing latency. However, this situation becomes complicated for HTTPS content that is to be delivered using the Transport Layer Security (TLS) protocol: the edge server must be able to carry out TLS handshakes for the cached domain. Most commercial CDNs require that the domain owner give their certificate's private key to the CDN's edge server or abandon caching of HTTPS content entirely. We examine the security and performance of a recently commercialized delegation technique in which the domain owner retains possession of their private key and splits the TLS state machine geographically with the edge server using a private key proxy service. This allows the domain owner to limit the amount of trust given to the edge server while maintaining the benefits of CDN caching. On the performance front, we find that latency is slightly worse compared to the insecure approach, but still significantly better than the domain owner serving the content directly. On the security front, we enumerate the security goals for TLS handshake proxying and identify a subtle difference between the security of RSA key transport and signed-Diffie--Hellman in TLS handshake proxying; we also discuss timing side channel resistance of the key server and the effect of TLS session resumption.
Resumo:
The Internet Engineering Task Force (IETF) is currently developing the next version of the Transport Layer Security (TLS) protocol, version 1.3. The transparency of this standardization process allows comprehensive cryptographic analysis of the protocols prior to adoption, whereas previous TLS versions have been scrutinized in the cryptographic literature only after standardization. This is even more important as there are two related, yet slightly different, candidates in discussion for TLS 1.3, called draft-ietf-tls-tls13-05 and draft-ietf-tls-tls13-dh-based. We give a cryptographic analysis of the primary ephemeral Diffie–Hellman-based handshake protocol, which authenticates parties and establishes encryption keys, of both TLS 1.3 candidates. We show that both candidate handshakes achieve the main goal of providing secure authenticated key exchange according to an augmented multi-stage version of the Bellare–Rogaway model. Such a multi-stage approach is convenient for analyzing the design of the candidates, as they establish multiple session keys during the exchange. An important step in our analysis is to consider compositional security guarantees. We show that, since our multi-stage key exchange security notion is composable with arbitrary symmetric-key protocols, the use of session keys in the record layer protocol is safe. Moreover, since we can view the abbreviated TLS resumption procedure also as a symmetric-key protocol, our compositional analysis allows us to directly conclude security of the combined handshake with session resumption. We include a discussion on several design characteristics of the TLS 1.3 drafts based on the observations in our analysis.
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to capture the security of AKE protocols even when the adversary learns certain secret values. Increased granularity of security can be modelled by considering partial leakage of secrets in the manner of models for leakage-resilient cryptography, designed to capture side-channel attacks. In this work, we use the strongest known partial-leakage-based security model for key exchange protocols, namely continuous after-the-fact leakage eCK (CAFL-eCK) model. We resolve an open problem by constructing the first concrete two-pass leakage-resilient key exchange protocol that is secure in the CAFL-eCK model.
Resumo:
Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving—a form of self-enforcement—and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic construction using a new type of trapdoor functions with extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum integer; we show an additional application of these new extractable trapdoor functions to standard digital signatures.
Resumo:
A modified Lu-Lee cryptosystem is proposed which appears to be resistant to the cryptanalytic attacks on the original Lu-Lee scheme. The data expansion due to encryption is moderate, and the size of the public key is also quite small.
Resumo:
Current smartphones have a storage capacity of several gigabytes. More and more information is stored on mobile devices. To meet the challenge of information organization, we turn to desktop search. Users often possess multiple devices, and synchronize (subsets of) information between them. This makes file synchronization more important. This thesis presents Dessy, a desktop search and synchronization framework for mobile devices. Dessy uses desktop search techniques, such as indexing, query and index term stemming, and search relevance ranking. Dessy finds files by their content, metadata, and context information. For example, PDF files may be found by their author, subject, title, or text. EXIF data of JPEG files may be used in finding them. User–defined tags can be added to files to organize and retrieve them later. Retrieved files are ranked according to their relevance to the search query. The Dessy prototype uses the BM25 ranking function, used widely in information retrieval. Dessy provides an interface for locating files for both users and applications. Dessy is closely integrated with the Syxaw file synchronizer, which provides efficient file and metadata synchronization, optimizing network usage. Dessy supports synchronization of search results, individual files, and directory trees. It allows finding and synchronizing files that reside on remote computers, or the Internet. Dessy is designed to solve the problem of efficient mobile desktop search and synchronization, also supporting remote and Internet search. Remote searches may be carried out offline using a downloaded index, or while connected to the remote machine on a weak network. To secure user data, transmissions between the Dessy client and server are encrypted using symmetric encryption. Symmetric encryption keys are exchanged with RSA key exchange. Dessy emphasizes extensibility. Also the cryptography can be extended. Users may tag their files with context tags and control custom file metadata. Adding new indexed file types, metadata fields, ranking methods, and index types is easy. Finding files is done with virtual directories, which are views into the user’s files, browseable by regular file managers. On mobile devices, the Dessy GUI provides easy access to the search and synchronization system. This thesis includes results of Dessy synchronization and search experiments, including power usage measurements. Finally, Dessy has been designed with mobility and device constraints in mind. It requires only MIDP 2.0 Mobile Java with FileConnection support, and Java 1.5 on desktop machines.
Resumo:
Certain software products employing digital techniques for encryption of data are subject to export controls in the EU Member States pursuant to Community law and relevant laws in the Member States. These controls are agreed globally in the framework of the so-called Wassenaar Arrangement. Wassenaar is an informal non-proliferation regime aimed at promoting international stability and responsibility in transfers of strategic (dual-use) products and technology. This thesis covers provisions of Wassenaar, Community export control laws and export control laws of Finland, Sweden, Germany, France and United Kingdom. This thesis consists of five chapters. The first chapter discusses the ratio of export control laws and the impact they have on global trade. The ratio is originally defence-related - in general to prevent potential adversaries of participating States from having the same tools, and in particular in the case of cryptographic software to enable signals intelligence efforts. Increasingly as the use of cryptography in a civilian context has mushroomed, export restrictions can have negative effects on civilian trade. Information security solutions may also be took weak because of export restrictions on cryptography. The second chapter covers the OECD's Cryptography Policy, which had a significant effect on its member nations' national cryptography policies and legislation. The OECD is a significant organization,because it acts as a meeting forum for most important industrialized nations. The third chapter covers the Wassenaar Arrangement. The Arrangement is covered from the viewpoint of international law and politics. The Wassenaar control list provisions affecting cryptographic software transfers are also covered in detail. Control lists in the EU and in Member States are usually directly copied from Wassenaar control lists. Controls agreed in its framework set only a minimum level for participating States. However, Wassenaar countries can adopt stricter controls. The fourth chapter covers Community export control law. Export controls are viewed in Community law as falling within the domain of Common Commercial Policy pursuant to Article 133 of the EC Treaty. Therefore the Community has exclusive competence in export matters, save where a national measure is authorized by the Community or falls under foreign or security policy derogations established in Community law. The Member States still have a considerable amount of power in the domain of Common Foreign and Security Policy. They are able to maintain national export controls because export control laws are not fully harmonized. This can also have possible detrimental effects on the functioning of internal market and common export policies. In 1995 the EU adopted Dual-Use Regulation 3381/94/EC, which sets common rules for exports in Member States. Provisions of this regulation receive detailed coverage in this chapter. The fifth chapter covers national legislation and export authorization practices in five different Member States - in Finland, Sweden, Germany, France and in United Kingdom. Export control laws of those Member States are covered when the national laws differ from the uniform approach of the Community's acquis communautaire. Keywords: export control, encryption, software, dual-use, license, foreign trade, e-commerce, Internet
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.
Resumo:
We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.
Resumo:
We examine a natural, but non-tight, reductionist security proof for deterministic message authentication code (MAC) schemes in the multi-user setting. If security parameters for the MAC scheme are selected without accounting for the non-tightness in the reduction, then the MAC scheme is shown to provide a level of security that is less than desirable in the multi-user setting. We find similar deficiencies in the security assurances provided by non-tight proofs when we analyze some protocols in the literature including ones for network authentication and aggregate MACs. Our observations call into question the practical value of non-tight reductionist security proofs. We also exhibit attacks on authenticated encryption schemes, disk encryption schemes, and stream ciphers in the multi-user setting.