850 resultados para High-dimensional data visualization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic flow time series data are usually high dimensional and very complex. Also they are sometimes imprecise and distorted due to data collection sensor malfunction. Additionally, events like congestion caused by traffic accidents add more uncertainty to real-time traffic conditions, making traffic flow forecasting a complicated task. This article presents a new data preprocessing method targeting multidimensional time series with a very high number of dimensions and shows its application to real traffic flow time series from the California Department of Transportation (PEMS web site). The proposed method consists of three main steps. First, based on a language for defining events in multidimensional time series, mTESL, we identify a number of types of events in time series that corresponding to either incorrect data or data with interference. Second, each event type is restored utilizing an original method that combines real observations, local forecasted values and historical data. Third, an exponential smoothing procedure is applied globally to eliminate noise interference and other random errors so as to provide good quality source data for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inclusion of high-level scripting functionality in state-of-the-art rendering APIs indicates a movement toward data-driven methodologies for structuring next generation rendering pipelines. A similar theme can be seen in the use of composition languages to deploy component software using selection and configuration of collaborating component implementations. In this paper we introduce the Fluid framework, which places particular emphasis on the use of high-level data manipulations in order to develop component based software that is flexible, extensible, and expressive. We introduce a data-driven, object oriented programming methodology to component based software development, and demonstrate how a rendering system with a similar focus on abstract manipulations can be incorporated, in order to develop a visualization application for geospatial data. In particular we describe a novel SAS script integration layer that provides access to vertex and fragment programs, producing a very controllable, responsive rendering system. The proposed system is very similar to developments speculatively planned for DirectX 10, but uses open standards and has cross platform applicability. © The Eurographics Association 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualising data for exploratory analysis is a major challenge in many applications. Visualisation allows scientists to gain insight into the structure and distribution of the data, for example finding common patterns and relationships between samples as well as variables. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are employed. These methods are favoured because of their simplicity, but they cannot cope with missing data and it is difficult to incorporate prior knowledge about properties of the variable space into the analysis; this is particularly important in the high-dimensional, sparse datasets typical in geochemistry. In this paper we show how to utilise a block-structured correlation matrix using a modification of a well known non-linear probabilistic visualisation model, the Generative Topographic Mapping (GTM), which can cope with missing data. The block structure supports direct modelling of strongly correlated variables. We show that including prior structural information it is possible to improve both the data visualisation and the model fit. These benefits are demonstrated on artificial data as well as a real geochemical dataset used for oil exploration, where the proposed modifications improved the missing data imputation results by 3 to 13%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a complete data visualisation system for large tabular databases, such as those commonly found in a business environment. A state-of-the-art 'cyberspace cell' data visualisation technique was investigated and a powerful visualisation system using it was implemented. Although allowing databases to be explored and conclusions drawn, it had several drawbacks, the majority of which were due to the three-dimensional nature of the visualisation. A novel two-dimensional generic visualisation system, known as MADEN, was then developed and implemented, based upon a 2-D matrix of 'density plots'. MADEN allows an entire high-dimensional database to be visualised in one window, while permitting close analysis in 'enlargement' windows. Selections of records can be made and examined, and dependencies between fields can be investigated in detail. MADEN was used as a tool for investigating and assessing many data processing algorithms, firstly data-reducing (clustering) methods, then dimensionality-reducing techniques. These included a new 'directed' form of principal components analysis, several novel applications of artificial neural networks, and discriminant analysis techniques which illustrated how groups within a database can be separated. To illustrate the power of the system, MADEN was used to explore customer databases from two financial institutions, resulting in a number of discoveries which would be of interest to a marketing manager. Finally, the database of results from the 1992 UK Research Assessment Exercise was analysed. Using MADEN allowed both universities and disciplines to be graphically compared, and supplied some startling revelations, including empirical evidence of the 'Oxbridge factor'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the problem of low-dimensional visualisation of very high dimensional information sources for the purpose of situation awareness in the maritime environment. In response to the requirement for human decision support aids to reduce information overload (and specifically, data amenable to inter-point relative similarity measures) appropriate to the below-water maritime domain, we are investigating a preliminary prototype topographic visualisation model. The focus of the current paper is on the mathematical problem of exploiting a relative dissimilarity representation of signals in a visual informatics mapping model, driven by real-world sonar systems. A realistic noise model is explored and incorporated into non-linear and topographic visualisation algorithms building on the approach of [9]. Concepts are illustrated using a real world dataset of 32 hydrophones monitoring a shallow-water environment in which targets are present and dynamic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highlights of Data Expedition: • Students explored daily observations of local climate data spanning the past 35 years. • Topological Data Analysis, or TDA for short, provides cutting-edge tools for studying the geometry of data in arbitrarily high dimensions. • Using TDA tools, students discovered intrinsic dynamical features of the data and learned how to quantify periodic phenomenon in a time-series. • Since nature invariably produces noisy data which rarely has exact periodicity, students also considered the theoretical basis of almost-periodicity and even invented and tested new mathematical definitions of almost-periodic functions. Summary The dataset we used for this data expedition comes from the Global Historical Climatology Network. “GHCN (Global Historical Climatology Network)-Daily is an integrated database of daily climate summaries from land surface stations across the globe.” Source: https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ We focused on the daily maximum and minimum temperatures from January 1, 1980 to April 1, 2015 collected from RDU International Airport. Through a guided series of exercises designed to be performed in Matlab, students explore these time-series, initially by direct visualization and basic statistical techniques. Then students are guided through a special sliding-window construction which transforms a time-series into a high-dimensional geometric curve. These high-dimensional curves can be visualized by projecting down to lower dimensions as in the figure below (Figure 1), however, our focus here was to use persistent homology to directly study the high-dimensional embedding. The shape of these curves has meaningful information but how one describes the “shape” of data depends on which scale the data is being considered. However, choosing the appropriate scale is rarely an obvious choice. Persistent homology overcomes this obstacle by allowing us to quantitatively study geometric features of the data across multiple-scales. Through this data expedition, students are introduced to numerically computing persistent homology using the rips collapse algorithm and interpreting the results. In the specific context of sliding-window constructions, 1-dimensional persistent homology can reveal the nature of periodic structure in the original data. I created a special technique to study how these high-dimensional sliding-window curves form loops in order to quantify the periodicity. Students are guided through this construction and learn how to visualize and interpret this information. Climate data is extremely complex (as anyone who has suffered from a bad weather prediction can attest) and numerous variables play a role in determining our daily weather and temperatures. This complexity coupled with imperfections of measuring devices results in very noisy data. This causes the annual seasonal periodicity to be far from exact. To this end, I have students explore existing theoretical notions of almost-periodicity and test it on the data. They find that some existing definitions are also inadequate in this context. Hence I challenged them to invent new mathematics by proposing and testing their own definition. These students rose to the challenge and suggested a number of creative definitions. While autocorrelation and spectral methods based on Fourier analysis are often used to explore periodicity, the construction here provides an alternative paradigm to quantify periodic structure in almost-periodic signals using tools from topological data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet users consume online targeted advertising based on information collected about them and voluntarily share personal information in social networks. Sensor information and data from smart-phones is collected and used by applications, sometimes in unclear ways. As it happens today with smartphones, in the near future sensors will be shipped in all types of connected devices, enabling ubiquitous information gathering from the physical environment, enabling the vision of Ambient Intelligence. The value of gathered data, if not obvious, can be harnessed through data mining techniques and put to use by enabling personalized and tailored services as well as business intelligence practices, fueling the digital economy. However, the ever-expanding information gathering and use undermines the privacy conceptions of the past. Natural social practices of managing privacy in daily relations are overridden by socially-awkward communication tools, service providers struggle with security issues resulting in harmful data leaks, governments use mass surveillance techniques, the incentives of the digital economy threaten consumer privacy, and the advancement of consumergrade data-gathering technology enables new inter-personal abuses. A wide range of fields attempts to address technology-related privacy problems, however they vary immensely in terms of assumptions, scope and approach. Privacy of future use cases is typically handled vertically, instead of building upon previous work that can be re-contextualized, while current privacy problems are typically addressed per type in a more focused way. Because significant effort was required to make sense of the relations and structure of privacy-related work, this thesis attempts to transmit a structured view of it. It is multi-disciplinary - from cryptography to economics, including distributed systems and information theory - and addresses privacy issues of different natures. As existing work is framed and discussed, the contributions to the state-of-theart done in the scope of this thesis are presented. The contributions add to five distinct areas: 1) identity in distributed systems; 2) future context-aware services; 3) event-based context management; 4) low-latency information flow control; 5) high-dimensional dataset anonymity. Finally, having laid out such landscape of the privacy-preserving work, the current and future privacy challenges are discussed, considering not only technical but also socio-economic perspectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although large-scale public hypermedia structures such as the World Wide Web are popularly referred to as "cyberspace", the extent to which they constitute a space in the everyday sense of the word is questionable. This paper reviews recent work in the area of three dimensional (3D) visualization of the Web that has attempted to depict it in the form of a recognizable space; in other words, as a navigable landscape that may be visibly populated by its users. Our review begins by introducing a range of visualizations that address different aspects of using the Web. These include visualizations of Web structure, especially of links, that act as 3D maps; browsing history; searches; evolution of the Web; and the presence and activities of multiple users. We then summarize the different techniques that are employed by these visualizations. We conclude with a discussion of key challenges for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Personal information is increasingly gathered and used for providing services tailored to user preferences, but the datasets used to provide such functionality can represent serious privacy threats if not appropriately protected. Work in privacy-preserving data publishing targeted privacy guarantees that protect against record re-identification, by making records indistinguishable, or sensitive attribute value disclosure, by introducing diversity or noise in the sensitive values. However, most approaches fail in the high-dimensional case, and the ones that don’t introduce a utility cost incompatible with tailored recommendation scenarios. This paper aims at a sensible trade-off between privacy and the benefits of tailored recommendations, in the context of privacy-preserving data publishing. We empirically demonstrate that significant privacy improvements can be achieved at a utility cost compatible with tailored recommendation scenarios, using a simple partition-based sanitization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequences of timestamped events are currently being generated across nearly every domain of data analytics, from e-commerce web logging to electronic health records used by doctors and medical researchers. Every day, this data type is reviewed by humans who apply statistical tests, hoping to learn everything they can about how these processes work, why they break, and how they can be improved upon. To further uncover how these processes work the way they do, researchers often compare two groups, or cohorts, of event sequences to find the differences and similarities between outcomes and processes. With temporal event sequence data, this task is complex because of the variety of ways single events and sequences of events can differ between the two cohorts of records: the structure of the event sequences (e.g., event order, co-occurring events, or frequencies of events), the attributes about the events and records (e.g., gender of a patient), or metrics about the timestamps themselves (e.g., duration of an event). Running statistical tests to cover all these cases and determining which results are significant becomes cumbersome. Current visual analytics tools for comparing groups of event sequences emphasize a purely statistical or purely visual approach for comparison. Visual analytics tools leverage humans' ability to easily see patterns and anomalies that they were not expecting, but is limited by uncertainty in findings. Statistical tools emphasize finding significant differences in the data, but often requires researchers have a concrete question and doesn't facilitate more general exploration of the data. Combining visual analytics tools with statistical methods leverages the benefits of both approaches for quicker and easier insight discovery. Integrating statistics into a visualization tool presents many challenges on the frontend (e.g., displaying the results of many different metrics concisely) and in the backend (e.g., scalability challenges with running various metrics on multi-dimensional data at once). I begin by exploring the problem of comparing cohorts of event sequences and understanding the questions that analysts commonly ask in this task. From there, I demonstrate that combining automated statistics with an interactive user interface amplifies the benefits of both types of tools, thereby enabling analysts to conduct quicker and easier data exploration, hypothesis generation, and insight discovery. The direct contributions of this dissertation are: (1) a taxonomy of metrics for comparing cohorts of temporal event sequences, (2) a statistical framework for exploratory data analysis with a method I refer to as high-volume hypothesis testing (HVHT), (3) a family of visualizations and guidelines for interaction techniques that are useful for understanding and parsing the results, and (4) a user study, five long-term case studies, and five short-term case studies which demonstrate the utility and impact of these methods in various domains: four in the medical domain, one in web log analysis, two in education, and one each in social networks, sports analytics, and security. My dissertation contributes an understanding of how cohorts of temporal event sequences are commonly compared and the difficulties associated with applying and parsing the results of these metrics. It also contributes a set of visualizations, algorithms, and design guidelines for balancing automated statistics with user-driven analysis to guide users to significant, distinguishing features between cohorts. This work opens avenues for future research in comparing two or more groups of temporal event sequences, opening traditional machine learning and data mining techniques to user interaction, and extending the principles found in this dissertation to data types beyond temporal event sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.