926 resultados para Heterocyclic Amines
Resumo:
Fluid management and dosage regimens of drugs in preterm infants should be based on the glomerular filtration rate. The current methods to determine glomerular flitration rate are invasive, time-consuming, and expensive. In contrast, creatinine clearance can be easy obtained and quickly determined. The purpose of this study was to compare plasma creatinine on the third and seventh day of life in preterm newborn infants, to evaluate the influence of maternal creatinine, and to demonstrate creatinine clearance can be used as a reliable indicator of glomerular filtration rate. We developed a prospective study (1994) including 40 preterm newborns (gestational age < 37 weeks), average = 34 weeks; birth weight (average) = 1840 g, in the first week of life. Inclusion criteria consisted of: absence of renal and urinary tract anomalies; O2 saturation 3 92%; adequate urine output (>1ml/kg/hr); normal blood pressure; absence of infections and no sympathomimetic amines in use. A blood sample was collected to determine plasma creatinine (enzymatic method) on the third and seventh day of life and creatinine clearance (CrCl) was obtained using the following equation: , k = 0.33 in preterm infant All plasma creatinine determinations showed normal values [third day: 0.78 mg/dl ± 0.24 (mean ± SD)and seventh day: 0.67 mg/dl ± 0.31 - (p>0.05)]. Also all creatinine clearance at third and seventh day of life were normal [third day: 19.5 ml/min ± 5.2 (mean ± SD) and seventh day: 23.8 ml/min ± 7.3 - (p>0,05)]. All preterm infants developed adequate renal function for their respective gestational age. In summary, our results indicate that, for clinical practice, the creatinine clearance, using newborn length, can be used to estimate glomerular filtration rate in preterm newborn infants.
Resumo:
2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by an heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. Moreover, it is expected that introducing more conjugation and rigidity into the resulting system will further improve its properties. The development of chromo/fluorescent probes that are capable of detecting ions with high sensitivity and selectivity in aqueous media is currently a topic of strong interest and the design of heteroditopic receptors that contain two or more different binding sites for the simultaneous complexation of cationic and anionic guests is a emerging field of supramolecular chemistry. In this communication, we report the synthesis of new phenanthroimidazoles substituted at position 2 with arylthienyl or arylfuryl moieties possessing substituents of different electronic character, in order to tune the chromo/fluoro response in the presence of relevant anions and metal cations. Their photophysical properties and chemosensory ability were studied in acetonitrile and mixtures of acetonitrile and water, and selective detection of cyanide was achieved in aqueous mixtures for some of the derivatives.
Resumo:
In recent years the research of sensors with good sensitivity and good selectivity in aqueous medium has been of great interest. Chemosensors soluble in aqueous media are very interesting, because of the importance in revealing a number of biological processes, disease states and environmental pollutions. 2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by a heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. In this communication, we report the synthesis of new phenanthroimidazoles, substituted at position 2 with (hetero)aryl groups of different electronic character, in order to evaluate their photophysical properties and chemosensory ability. The new derivatives were characterized by the usual techniques and a detailed photophysical study was undertaken. The evaluation of the compounds as fluorimetric chemosensors was carried out by performing titrations in acetonitrile and acetonitrile/water in the presence of relevant organic and inorganic anions, and of alkaline, alkaline-earth and transition metal cations.
Resumo:
Accepted Manuscript
Resumo:
Tese de Doutoramente em Ciências (área de especialização em Química).
Resumo:
A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid was followed with HPLC/UV and 1H NMR monitoring. Release of the carboxylic acid was faster for the monoalkylated derivatives (approximately within 20 min), at the longer wavelengths of irradiation (350 and 419 nm). The photophysics of the heterocyclic conjugates was also evaluated by both steady state and time-resolved methods.
Resumo:
[Excerpt] The purine core is a privileged scaffold in medicinal chemistry and the biological relevance of purine derivatives makes them attractive targets in the preparation of combinatorial libraries.1,2 In particular, there is a great interest in the synthesis of 8-substituted purines due to their important potential as antiviral and anticancer agents.3 Reports on 8-aminopurines are limited and general methods to obtain these purine derivatives are still needed.4 Cyclic amines and hydrazines are key structural motifs in various bioactive agents.5 Here we report a novel, efficient and inexpensive method for the synthesis of 6,8-diaminopurines 4 incorporating cycloalkylamino substituents at N3position of the purine ring. (...)
Resumo:
[Excerpt] Purine nucleobases are fundamental biochemicals in living organisms. They have been a valuable inspiration for drug design once they play several key roles in the cell.1 To the best of our knowledge, reported routes to 8-aminopurines are still scarce due to the difficulty in introducing amino groups in this position of the purine ring. Here we report a novel, inexpensive and facile synthetic method to generate N3,N6-disubstituted-6,8-diaminopurines. In our research group, a number of substituted purines have been obtained from a common imidazole precursor, the 5-amino-4-cyanoformimidoyl imidazole 1. Recently, a comprehensive study on the reactivity of imidazoles 1 with nucleophiles under acidic conditions led us to develop experimental methods to incorporate primary amines into the cyanoformimidoyl group.2 (...)
Resumo:
[Excerpt] Purine nucleobases are essential biomolecules in living organisms. Playing several key roles in the cell, they have been a significant inspiration for drug design.1 Benzimidazole nucleus is an important pharmacophore in the development of molecules with pharmaceutical or biological interest. Benzimidazoles have been reported to display significant pharmacological activities such as antiulcer, antifungal, antiparkinson, anticancer and antibiotic.2 Fused structures incorporating these two scaffolds might be important for medicinal chemistry and, to the best of our knowledge, there are no reports of these systems in the literature. In particular, benzo[4,5]imidazo[2,1]purines seem to be novel and must be important target molecules in the heterocyclic synthesis. (...)
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Química)
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing 3-fold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m- and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0), chemical oxidized with HNO3 (ACHNO3) and thermal treated (ACH2), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to 8-fold. In 24h, the biological treatment of NoA and MY1 with AC0, decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. This article is protected by copyright. All rights reserved