272 resultados para Heisenberg antiferromagnets
Resumo:
I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).
Resumo:
In questa trattazione ci proponiamo di analizzare e approfondire alcune delle definizioni fondamentali di funzione convessa; l’ambiente nel quale lavoreremo non si limiterà a quello euclideo, ma spazierà anche tra gruppo di Heisenberg e gruppo di Carnot. In questo lavoro dimostriamo una nuova caratterizzazione delle funzioni convesse in termini delle proprietà di sottomedia.
Resumo:
Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn2-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn2YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn2RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I-4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80 ≤ T ≤ 270) K. The studies of Mn2RhSn were expandedrnto the broad composition range and continued on thin film samples.
Resumo:
In questo elaborato vengono discusse le catene di spin-1, modelli quantistici definiti su un reticolo unidimensionale con interazione tra siti primi vicini. Fra la ricca varietà di tipologie esistenti è stato scelto di porre attenzione primariamente sul modello antiferromagnetico con interazione puramente biquadratica. Vengono presentati diversi metodi di classificazione degli autostati di tale modello, a partire dalle simmetrie che ne caratterizzano l’Hamiltoniana. La corrispondenza con altri modelli noti, quali il modello XXZ di spin 1/2, la catena di Heisenberg SU (3) ed i modelli di Potts, è utile ad individuare strutture simmetriche nascoste nel formalismo di spin-1, le quali consentono di ricavare informazioni sullo spettro energetico. Infine, vengono presentati risultati numerici accompagnati da alcune considerazioni sulle modifiche dello spettro quando si aggiunge un termine bilineare alla Hamiltoniana biquadratica.
Resumo:
Lo scopo di questa tesi è dimostrare il Principio Forte di Continuazione Unica per opportune soluzioni di un'equazione di tipo Schrödinger Du=Vu, ove D è il sub-Laplaciano canonico di un gruppo di tipo H e V è un potenziale opportuno. Nel primo capitolo abbiamo esposto risultati già noti in letteratura sui gruppi di tipo H: partendo dalla definizione di tali gruppi, abbiamo fornito un'utile caratterizzazione in termini "elementari" che permette di esplicitare la soluzione fondamentale dei relativi sub-Laplaciani canonici. Nel secondo capitolo abbiamo mostrato una formula di rappresentazione per funzioni lisce sui gruppi di tipo H, abbiamo dimostrato una forma forte del Principio di Indeterminazione di Heisenberg (sempre nel caso di gruppi di tipo H) e abbiamo fornito una formula per la variazione prima dell'integrale di Dirichlet associato a Du=Vu. Nel terzo capitolo, infine, abbiamo analizzato le proprietà di crescita di funzioni di frequenza, utili a dimostrare le stime integrali che implicano in modo piuttosto immediato il Principio Forte di Continuazione Unica, principale oggetto del nostro studio.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.
Resumo:
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.
Resumo:
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.
Resumo:
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Resumo:
We investigate the simple harmonic oscillator in a 1-d box, and the 2-d isotropic harmonic oscillator problem in a circular cavity with perfectly reflecting boundary conditions. The energy spectrum has been calculated as a function of the self-adjoint extension parameter. For sufficiently negative values of the self-adjoint extension parameter, there are bound states localized at the wall of the box or the cavity that resonate with the standard bound states of the simple harmonic oscillator or the isotropic oscillator. A free particle in a circular cavity has been studied for the sake of comparison. This work represents an application of the recent generalization of the Heisenberg uncertainty relation related to the theory of self-adjoint extensions in a finite volume.
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Holes localized on a Skyrmion in a doped antiferromagnet on the honeycomb lattice: Symmetry analysis
Resumo:
Using the low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice, we study the localization of holes on Skyrmions, as a potential mechanism for the preformation of Cooper pairs. In contrast to the square lattice case, for the standard radial profile of the Skyrmion on the honeycomb lattice, only holes residing in one of the two hole pockets can get localized. This differs qualitatively from hole pairs bound by magnon exchange, which is most attractive between holes residing in different momentum space pockets. On the honeycomb lattice, magnon exchange unambiguously leads to f-wave pairing, which is also observed experimentally. Using the collective-mode quantization of the Skyrmion, we determine the quantum numbers of the localized hole pairs. Again, f-wave symmetry is possible, but other competing pairing symmetries cannot be ruled out.
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.
Resumo:
Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.