955 resultados para Health Initiative Memory
Resumo:
OBJECTIVE To provide guidance on standards for reporting studies of diagnostic test accuracy for dementia disorders. METHODS An international consensus process on reporting standards in dementia and cognitive impairment (STARDdem) was established, focusing on studies presenting data from which sensitivity and specificity were reported or could be derived. A working group led the initiative through 4 rounds of consensus work, using a modified Delphi process and culminating in a face-to-face consensus meeting in October 2012. The aim of this process was to agree on how best to supplement the generic standards of the STARD statement to enhance their utility and encourage their use in dementia research. RESULTS More than 200 comments were received during the wider consultation rounds. The areas at most risk of inadequate reporting were identified and a set of dementia-specific recommendations to supplement the STARD guidance were developed, including better reporting of patient selection, the reference standard used, avoidance of circularity, and reporting of test-retest reliability. CONCLUSION STARDdem is an implementation of the STARD statement in which the original checklist is elaborated and supplemented with guidance pertinent to studies of cognitive disorders. Its adoption is expected to increase transparency, enable more effective evaluation of diagnostic tests in Alzheimer disease and dementia, contribute to greater adherence to methodologic standards, and advance the development of Alzheimer biomarkers.
Resumo:
Studies of memory-guided saccades in monkeys show an upward bias, while studies of antisaccades in humans show a diagonal effect, a deviation of endpoints toward the 45° diagonal. To determine if these two different spatial biases are specific to different types of saccades, we studied prosaccades, antisaccades and memory-guided saccades in humans. The diagonal effect occurred not with prosaccades but with antisaccades and memory-guided saccades with long intervals, consistent with hypotheses that it originates in computations of goal location under conditions of uncertainty. There was a small upward bias for memory-guided saccades but not prosaccades or antisaccades. Thus this bias is not a general effect of target uncertainty but a property specific to memory-guided saccades.
Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention
Resumo:
In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.
Resumo:
OBJECTIVE There is mixed evidence regarding neural change following cognitive training. Brain activation increase, decrease, or a combination of both may occur. We investigated training-induced neural change using two different memory training approaches. METHODS Very preterm born children (aged 7-12 years) were randomly allocated to a memory strategy training, an intensive working memory practice or a waiting control group. Before and immediately after the trainings and the waiting period, brain activation during a visual working memory task was measured using fMRI and cognitive performance was assessed. RESULTS Following both memory trainings, there was a significant decrease of fronto-parietal brain activation and a significant increase of memory performance. In the control group, no neural or performance change occurred after the waiting period. CONCLUSION These pilot data point towards a training-related decrease of brain activation, independent of the training approach. Our data highlight the high training-induced plasticity of the child's brain during development.
Resumo:
Background: Little research has been conducted to assess the effect of using memory training with school-aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7¬-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.
Resumo:
We share the idea of Lane et al. that successful psychotherapy exerts its effects through memory reconsolidation. To support it, we add further evidence that a behavioral interference may trigger memory update during reconsolidation. Furthermore, we propose that – in addition to replacing maladaptive emotions – new emotions experienced in the therapeutic process catalyze reconsolidation of the updated memory structure.
Resumo:
In a prospective memory task responding to a prospective memory target involves switching between ongoing and prospective memory task which can result in a slowing of subsequent ongoing task performance (i.e., an after-effect). Moreover, a slowing can also occur when prospective memory targets occur after the prospective memory task is deactivated (i.e., another after-effect). In this study, we investigated both after-effects within the same study. Moreover, we also tested whether the latter after-effects even occur on subsequent ongoing task trials. The results show, in fact, after-effects of all kinds. Thus, (1) correctly responding to prospective memory targets results in after-effects, a so far neglected cost on ongoing task performance, (2) responding to deactivated prospective memory targets also slows down performance, probably due to the involuntary retrieval of the intention, and (3) this slowing is present even on subsequent ongoing task trials, suggesting that even deactivated intentions are sufficient to induce a conflict that requires subsequent adaptation. Overall, these results indicate that performance slowing in a prospective memory experiment includes various kinds of sources, not only monitoring cost, and these sources may be understood best in terms of conflict adaptation.
Resumo:
Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
OBJECTIVE This study explored whether acute serum marker S100B is related with post-concussive symptoms (PCS) and neuropsychological performance 4 months after paediatric mild traumatic brain injury (mTBI). RESEARCH DESIGN AND METHODS This prospective short-term longitudinal study investigated children (aged 6-16 years) with mTBI (n = 36, 16 males) and children with orthopaedic injuries (OI, n = 27, 18 males) as a control group. S100B in serum was measured during the acute phase and was correlated with parent-rated PCS and neuropsychological performance 4 months after the injury. MAIN OUTCOMES AND RESULTS The results revealed no between-group difference regarding acute S100B serum concentration. In children after mTBI, group-specific significant Spearman correlations were found between S100B and post-acute cognitive PCS (r = 0.54, p = 0.001) as well as S100B and verbal memory performance (r = -0.47, p = 0.006). In children after OI, there were insignificant positive relations between S100B and post-acute somatic PCS. In addition, insignificant positive correlations were found between neuropsychological outcome and S100B in children after OI. CONCLUSIONS S100B was not specific for mild brain injuries and may also be elevated after OI. The group-specific association between S100B and ongoing cognitive PCS in children after mTBI should motivate to examine further the role of S100B as a diagnostic biomarker in paediatric mTBI.
Resumo:
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A + colour A + location A; shape B + colour B + location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is ‘unbound’ with respect to the others (e.g. shape A + colour B + location A; shape A + colour A + location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes’ false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are “colour experts” and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory.
Resumo:
A large body of research demonstrated that participants preferably look back to the encoding location when retrieving visual information from memory. However, the role of this 'looking back to nothing' is still debated. The goal of the present study was to extend this line of research by examining whether an important area in the cortical representation of the oculomotor system, the frontal eye field (FEF), is involved in memory retrieval. To interfere with the activity of the FEF, we used inhibitory continuous theta burst stimulation (cTBS). Before stimulation was applied, participants encoded a complex scene and performed a short-term (immediately after encoding) or long-term (after 24 h) recall task, just after cTBS over the right FEF or sham stimulation. cTBS did not affect overall performance, but stimulation and statement type (object vs. location) interacted. cTBS over the right FEF tended to impair object recall sensitivity, whereas there was no effect on location recall sensitivity. These findings suggest that the FEF is involved in retrieving object information from scene memory, supporting the hypothesis that the oculomotor system contributes to memory recall.
Resumo:
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.