950 resultados para HYDROGEN PEROXIDE
Resumo:
Background Et aims: To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal. macrophages, hematopoiesis and nutritional status of mice. Methods: Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. Results: The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P < 0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well. as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal. macrophages obtained from the -GLN group (P < 0.05). Conclusion: These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Objective: Glutamine is one of the most abundant amino acids found in maternal milk, and its concentration increases throughout lactation. Because glutamine is essential for macrophage functionality, it is hereby suggested that early weaning in conjunction with the absence of glutamine consumption impairs the functioning of macrophages, which could in turn be reversed with an in vitro supplementation with glutamine. Methods: Swiss Webster mice were early weaned at 14 d of age (EW group) or at 21 d of age (control group, n = 8 per group). The EW group was fed a glutamine-free diet from days 14 to 21 of life. Results: Mice in the EW group presented a significant decrease in plasma and muscle concentrations of glutamine and an increase in the activity of glutamine synthetase in the muscle. Peritoneal macrophages obtained from animals in the EW group presented a significant increase in the production of interleukin (IL)-10 and a significant decrease in the synthesis of IL-1 beta, IL-6, tumor necrosis factor-a, nitric oxide, and hydrogen peroxide and in their ability to adhere, spread, phagocytize, and kill fungi. Glutamine in vitro supplementation reversed the decrease in IL-6, nitric oxide, and hydrogen peroxide synthesis and the decrease in the capacity to adhere, spread, and phagocytize in animals of the EW group. Conclusion: These new. data may imply that a lack of glutamine intake in early weaned mice hampers the functioning of peritoneal macrophages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Infants who are breast-fed have been shown to have a lower incidence of certain infectious diseases compared with formula-fed infants. Glutamine is one of the most abundant amino acids found in maternal milk and it is essential for the function of immune system cells such as macrophages. The purpose of this study was to investigate the effect of glutamine supplementation on the function of peritoneal macrophages and on hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guerin (BCG). Mice were wearied at 14 d of age and distributed to 2 groups and fed either a glutamine-free diet (n = 16) or a glutamine-supplemented diet (+Gln (n = 16). Both diets were isonitrogenous (with addition of a mixture of nonessential amino acids) and isocaloric. At d 21, 2 subgroups of mice (n = 16) were intraperitoneally injected with BCG and all mice were killed at d 28. Plasma, muscle and liver glutamine concentrations and muscle glutamine synthetase activity were not affected by diet or inoculation with BCG. The +GIn diet led to increased leukocyte and lymphocyte counts in the peripheral blood (P < 0.05) and granulocyte and lymphocyte counts in the bone marrow and spleen (P < 0.05). The +GIn diet increased spreading and adhesion capacities, hydrogen peroxide, nitric oxide, and tumor necrosis factor-alpha (TNF alpha) syntheses and the phagocytic and fungicidal activity of peritoneal macrophages (P < 0.05). The interaction between the +GIn diet and BCG inoculation increased the area under the curve of interleukin (IL)-1 beta and TNF alpha syntheses (P < 0.05). In conclusion, the intake of glutamine increases the function of peritoneal macrophages and hemopoiesis in early-weaned and BCG-inoculated mice. These data have important implications for the design of breast milk substitutes for human infants.
Resumo:
In the present work the microbial decontamination of some medicinal plants by plasma treatment using oxygen gas or a mixture of oxygen and hydrogen peroxide was investigated. The efficiency of the decontamination process was analyzed by the count of heterotropic microorganisms and pathogenic research. The results showed a reduction in the microorganism number such as 3 and 4 logarithmic cycles for ginkgo and artichoke, while it was not efficient for samples containing hard and thick cells, and mucilage, such as guarana and chamomile.
Resumo:
In this work, chemometric methods are reported as potential tools for monitoring the authenticity of Brazilian ultra-high temperature (UHT) milk processed in industrial plants located in different regions of the country. A total of 100 samples were submitted to the qualitative analysis of adulterants such as starch, chlorine, formal. hydrogen peroxide and urine. Except for starch, all the samples reported, at least, the presence of one adulterant. The use of chemometric methodologies such as the Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) enabled the verification of the occurrence of certain adulterations in specific regions. The proposed multivariate approaches may allow the sanitary agency authorities to optimise materials, human and financial resources, as they associate the occurrence of adulterations to the geographical location of the industrial plants. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 +/- 0.004 g) in relation to control (E(max) = 0.18 +/- 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 +/- 0.009 g) in relation to control (E(max) = 0.38 +/- 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 +/- 0.004 g) and contraction (E(max) = 0.34 +/- 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 +/- 0.012 g) and contraction (E(max) = 0.42 +/- 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 +/- 0.004 g) or contraction (E(max) = 0.54 +/- 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 +/- 435 U) in relation to control (10 455 +/- 303 U). SC236 reduced the fluorescence in contralateral samples (8250 +/- 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2)(-) derived from COX-2.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the genus Crotalaria that causes cytotoxicity and genotoxicity in animals and humans. It is well established that the toxicity of MCT results from its hepatic bioactivation to dehydromonocrotaline (DHM), an alkylating agent, but the exact mechanism of action remains unknown. In a previous study, we demonstrated DHM`s inhibition of mitochondrial NADH-dehydrogenase activity at micromolar concentrations, which is an effect associated with a significant reduction in ATP synthesis. As a follow-up study, we have evaluated the ability of DHM to induce mitochondrial permeability transition (MPT) and its associated processes in isolated rat liver mitochondria. In the presence of 10 mu M Ca(2+), DHM (50-250 mu M) elicited MPT in a concentration-dependent, but cyclosporine A-independent manner, as assessed by mitochondrial swelling, which is associated with mitochondrial Ca(2+) efflux and cytochrome c release. DHM (50-250 mu M) did not cause hydrogen peroxide accumulation but did deplete endogenous glutathione and NAD(P)H, while oxidizing protein thiol groups. These results potentially indicate the involvement of mitochondria, via apoptosis, in the well-documented cytotoxicity of monocrotaline. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here. we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A catalytic system consisting of iron tetraphenylporphyrin supported on an alumina matrix for oxidation of (-)-cubebin with iodosylbenzene or hydrogen peroxide is reported. Conversion of (-)-cubebin is very efficient (100%) with 100% selectivity producing only (-)-hinokinin when iodosylbenzene is used as the oxidant and 70% conversion with 100% selectivity when hydrogen peroxide is the oxidant at room temperature under atmospheric pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
An L-amino acid oxidase (Bp-LAAO) from Bothrops pauloensis snake venom was highly purified using sequential chromatography steps on CM-Sepharose, Phenyl-Sepharose CL4B, Benzamidine Sepharose and C18 reverse-phase HPLC. Purified Bp-LAAO showed to be a homodimeric acidic glycoprotein with molecular weight around 65 kDa under reducing conditions in SDS-PAGE. The best substrates for Bp-LAAO were L-Met, L-Leu, L-Phe and L-Ile and the enzyme showed a strong reduction of its catalytic activity upon L-Met and L-Phe substrates at extreme temperatures. Bp-LAAO showed leishmanicidal, antitumoral and bactericidal activities dose dependently. Bp-LAAO induced platelet aggregation in platelet-rich plasma and this activity was inhibited by catalase. Bp-LAAC-cDNA of 1548 bp codified a mature protein with 516 amino acid residues corresponding to a theoretical isoelectric point and molecular weight of 6.3 and 58 kDa, respectively. Additionally, structural and phylogenetic studies identified residues under positive selection and their probable location in Elp-LAAO and other snake venom LAAOs (svLAAOs). Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this work we have defined the nature of the p-cresol and p-thiocresol adducts generated from acylium ions during HF cleavage, following contemporary Boc/benzyl solid-phase peptide synthesis. Contrary to the results in previous reports, we found that both p-cresol and p-thiocresol predominantly form. aryl esters under typical cleavage conditions. Initially we investigated a number of small peptides containing either a single glutamate residue or a C-terminal long-chain amino acid which allowed us to unambiguously characterize the scavenged side products. Whereas, the p-cresol esters are stable at 0 degrees C they rearrange irreversibly at higher temperatures (5-20 degrees C) to form aryl ketones. By contrast, p-thiocresol esters do not undergo a Fries rearrangement but readily undergo further additions of p-thiocresol to form ketenebisthioacetals and trithio ortho esters, even at low temperatures. Importantly, we found by LC/MS and FT-ICR MS analysis that peptides containing p-cresol esters at glutamyl side chains are susceptible to amidation and fragmentation reactions at these sites during standard mild base workup procedures. The significance of these side reactions was further demonstrated in the synthesis of neutrophil immobilization factor, a 26-residue peptide, containing four glutamic acid residues. The side reactions were largely avoided by mild hydrogen peroxide-catalyzed hydrolysis which converted the p-cresol adducts to the free carboxylic acids in near quantitative yield. The choice of p-cresol as a reversible acylium ion scavenger when coupled with the simple workup conditions described is broadly applicable to Boc/benzyl peptide synthesis and will significantly enhance the quality of peptides produced.
Resumo:
Reaction of bis(ethane-1,2-diamine)copper(II) with acetaldehyde and nitromethane in methanol leads, stereoselectively, to the new macrocyclic complex (trans-5(R),7(R),12(S),14(S))-tetramethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane)copper(II) perchlorate alpha-[CuL1](ClO4)(2) in good yield. Reduction of the nitro groups affords the hexaamine (L-2), which was crystallized as [H4L2](ClO4)(4) . 2H(2)O and characterized by an X-ray crystal structure study (monoclinic P2(1)/n, a = 9.763(2) Angstrom, b = 12.1988(7) Angstrom, c = 13.036(2) Angstrom, beta = 105.668(7)degrees, Z = 2) and complexed with Cu-II to produce the complex beta-[Cu(H2L2)](ClO4)(4) . 2H(2)O, which has also been characterized by X-ray crystallography (monoclinic P2(1)/n, a = 9.717(4) Angstrom, b = 12.174(2) Angstrom, c = 13.036(5) Angstrom, beta = 106.51(2)degrees, Z = 2). Reaction of alpha-[CuL1](2+) with either basic hydrogen peroxide or dilute nitrous acid leads to mild reduction of the nitro groups to afford the ketoxime L-3 as its N-based isomeric Cu-II complexes, trans-I [CuL3](ClO4)(2) and trans-II [Cu(L-3)Cl]Cl . 7H(2)O, the latter of which has been characterized structurally: triclinic, <P(1)over bar> a = 10.8441(5) Angstrom, b = 11.6632(9) Angstrom, c = 11.8723(9) Angstrom, alpha = 113.634(7)degrees, beta = 95.744(5), gamma = 94.851(5)degrees Z = 2. Variations in the configurations of the coordinated amines in [CuL1](2+), [CuL2](2+), and [CuL3](2+) have a profound effect on the spectroscopy and electrochemistry of their complexes.