977 resultados para HUMAN-EVOLUTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is recognized as one of the major human pathogens and is by far one of the most common nosocomial organisms. The genetic basis for the emergence of highly epidemic strains remains mysterious. Studying the microevolution of the different clones of S. aureus is essential for identifying the forces driving pathogen emergence and spread. The aim of the present study was to determine the genetic changes characterizing a lineage belonging to the South German clone (ST228) that spread over ten years in a tertiary care hospital in Switzerland. For this reason, we compared the whole genome of eight isolates recovered between 2001 and 2008 at the Lausanne hospital. The genetic comparison of these isolates revealed that their genomes are extremely closely related. Yet, a few more important genetic changes, such as the replacement of a plasmid, the loss of large fragments of DNA, or the insertion of transposases, were observed. These transfers of mobile genetic elements shaped the evolution of the ST228 lineage that spread within the Lausanne hospital. Nevertheless, although the strains analyzed differed in their dynamics, we have not been able to link a particular genetic element with spreading success. Finally, the present study showed that new sequencing technologies improve considerably the quality and quantity of information obtained for a single strain; but this information is still difficult to interpret and important investments are required for the technology to become accessible for routine investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum) species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) infection heavily compromises the immune system. The decrease of the T cell CD4+ subset along the evolution to acquired immunodeficiency syndrome has been considered as a hallmark of HIV infection. In this paper we review some aspects of the immunopathology of HIV infection and discuss the importance of the flow cytometry for the evaluation of the T lymphocyte subsets in the follow-up of HIV infected children and adults, and for the monitoring of the immune reconstitution upon antiretroviral therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoparasitology may be developed as a new tool to parasite evolution studies. DNA sequences dated thousand years ago, recovered from archaeological material, means the possibility to study parasite-host relationship coevolution through time. Together with tracing parasite-host dispersion throughout the continents, paleoparasitology points to the interesting field of evolution at the molecular level. In this paper a brief history of paleoparasitology is traced, pointing to the new perspectives opened by the recent techniques introduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clinical-serological follow-up was carried out in a canine population in endemic foci of Leishmania braziliensis spread in northwestern Argentina. Each dog was studied in at least two visits, 309±15 days (X±SE) apart. Some initially healthy dogs (n=52) developed seroconversion or lesions. The clinical evolution of the disease in dogs resembles in many aspects the human disease. Similarities include the long duration of most ulcers with occasional healing or appearance of new ones and the late appearance of erosive snout lesions in some animals. Yearly incidence rates of 22.7% for seroconversion and of 13.5% for disease were calculated as indicators of the force of infection by this parasite upon the canine population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nematode parasite Ascaris lumbricoides infects the digestive tracts of over 1.4 billion people worldwide, and its sister species, Ascaris suum, has infected a countless number of domesticated and feral pigs. It is generally thought that the putative ancestor to these worms infected either humans or pigs, but with the advent of domestication, they had ample opportunity to jump to a new host and subsequently specialize and evolve into a new species. While nuclear DNA markers decisively separate the two populations, mitochondrial sequences reveal that three major haplotypes are found in A. suum and in A. lumbricoides, indicating either occasional hybridization, causing introgression of gene trees, or retention of polymorphism dating back to the original ancestral species. This article provides an illustration of the combined contribution of parasitology, archaeoparasitology, genetics and paleogenetics to the history of ascariasis. We specifically investigate the molecular history of ascariasis in humans by sequencing DNA from the eggs of Ascaris found among ancient archeological remains. The findings of this paleogenetic survey will explain whether the three mitochondrial haplotypes result from recent hybridization and introgression, due to intensive human-pig interaction, or whether their co-occurrence predates pig husbandry, perhaps dating back to the common ancestor. We hope to show how human-pig interaction has shaped the recent evolutionary history of this disease, perhaps revealing the identity of the ancestral host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular paleoparasitological diagnostic approach was developed for Enterobius vermicularis. Ancient DNA was extracted from 27 coprolites from archaeological sites in Chile and USA. Enzymatic amplification of human mtDNA sequences confirmed the human origin. We designed primers specific to the E. vermicularis 5S ribosomal RNA spacer region and they allowed reproducible polymerase chain reaction identification of ancient material. We suggested that the paleoparasitological microscopic identification could accompany molecular diagnosis, which also opens the possibility of sequence analysis to understand parasite-host evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability of the G glycoprotein from human respiratory syncytial viruses (HRSV) (groups A and B) isolated during 17 consecutive epidemics in Montevideo, Uruguay have been analyzed. Several annual epidemics were studied, where strains from groups A and B circulated together throughout the epidemics with predominance of one of them. Usually, group A predominates, but in some epidemics group B is more frequently detected. To analyse the antigenic diversity of the strains, extracts of cells infected with different viruses of group A were tested with a panel of anti-G monoclonal antibodies (MAbs). The genetic variability of both groups was analyzed by sequencing the C-terminal third of the G protein gene. The sequences obtained together with previously published sequences were used to perform phylogenetic analyses. The data from Uruguayan isolates, together with those from the rest of the world provide information regarding worldwide strain circulation. Phylogenetic analyses of HRSV from groups A and B show a model of evolution analogous to the one proposed for influenza B viruses providing information that would be beneficial for future immunization programs and to design safe vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of genetic data for human immunodeficiency virus type 1 (HIV-1) and human T-cell lymphotropic virus type 1 (HTLV-1) is essential to improve treatment and public health strategies as well as to select strains for vaccine programs. However, the analysis of large quantities of genetic data requires collaborative efforts in bioinformatics, computer biology, molecular biology, evolution, and medical science. The objective of this study was to review and improve the molecular epidemiology of HIV-1 and HTLV-1 viruses isolated in Brazil using bioinformatic tools available in the Laboratório Avançado de Sáude Pública (Lasp) bioinformatics unit. The analysis of HIV-1 isolates confirmed a heterogeneous distribution of the viral genotypes circulating in the country. The Brazilian HIV-1 epidemic is characterized by the presence of multiple subtypes (B, F1, C) and B/F1 recombinant virus while, on the other hand, most of the HTLV-1 sequences were classified as Transcontinental subgroup of the Cosmopolitan subtype. Despite the high variation among HIV-1 subtypes, protein glycosylation and phosphorylation domains were conserved in the pol, gag, and env genes of the Brazilian HIV-1 strains suggesting constraints in the HIV-1 evolution process. As expected, the functional protein sites were highly conservative in the HTLV-1 env gene sequences. Furthermore, the presence of these functional sites in HIV-1 and HTLV-1 strains could help in the development of vaccines that pre-empt the viral escape process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the prevalence of mutations in the -550 (H/L) and -221 (X/Y) mannose-binding lectin (MBL) gene promoter regions and their impact on infection by human immunodeficiency virus 1 (HIV-1) in a population of 128 HIV-1 seropositive and 97 seronegative patients. The allele identification was performed through the sequence-specific primer polymerase chain reaction method, using primer sequences specific to each polymorphism. The evolution of the infection was evaluated through CD4+ T-lymphocyte counts and plasma viral load. The allele and haplotype frequencies among HIV-1-infected patients and seronegative healthy control patients did not show significant differences. CD4+ T-lymphocyte counts showed lower levels among seropositive patients carrying haplotypes LY, LX and HX, as compared to those carrying the HY haplotype. Mean plasma viral load was higher among seropositive patients with haplotypes LY, LX and HX than among those carrying the HY haplotype. When promoter and exon 1 mutations were matched, it was possible to identify a significantly higher viral load among HIV-1 infected individuals carrying haplotypes correlated to low serum levels of MBL. The current study shows that haplotypes related to medium and low MBL serum levels might directly influence the evolution of viral progression in patients. Therefore, it is suggested that the identification of haplotypes within the promoter region of the MBL gene among HIV-1 infected persons should be further evaluated as a prognostic tool for AIDS progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.