957 resultados para HIGH-AFFINITY BINDING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevation of the neuropeptide corticotropin-releasing factor (CRF) in the brain is associated with a reduction of food intake and body weight gain in normal and obese animals. A protein that binds CRF and the related peptide, urocortin, with high affinity, CRF-binding protein (CRF-BP), may play a role in energy homeostasis by inactivating members of this peptide family in ingestive and metabolic regulatory brain regions. Intracerebroventricular administration in rats of the high-affinity CRF-BP ligand inhibitor, rat/human CRF (6-33), which dissociates CRF or urocortin from CRF-BP and increases endogenous brain levels of “free” CRF or urocortin significantly blunted exaggerated weight gain in Zucker obese subjects and in animals withdrawn from chronic nicotine. Chronic administration of CRF suppressed weight gain nonselectively by 60% in both Zucker obese and lean control rats, whereas CRF-BP ligand inhibitor treatment significantly reduced weight gain in obese subjects, without altering weight gain in lean control subjects. Nicotine abstinent subjects, but not nicotine-naive controls, experienced a 35% appetite suppression and a 25% weight gain reduction following acute and chronic administration, respectively, of CRF-BP ligand inhibitor. In marked contrast to the effects of a CRF-receptor agonist, the CRF-BP ligand inhibitor did not stimulate adrenocorticotropic hormone secretion or elevate heart rate and blood pressure. These results provide support for the hypothesis that the CRF-BP may function within the brain to limit selected actions of CRF and/or urocortin. Furthermore, CRF-BP may represent a novel and functionally selective target for the symptomatic treatment of excessive weight gain associated with obesity of multiple etiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancers in vitro and in vivo by mechanisms that include apparent direct effects through specific binding sites expressed on tumors and that differ from pituitary human GHRH (hGHRH) receptors. In this study, GHRH antagonist JV-1–38 (20 μg/day per animal s.c.) inhibited the growth of orthotopic CAKI-1 human renal cell carcinoma (RCC) by 83% and inhibited the development of metastases to lung and lymph nodes. Using ligand competition assays with 125I-labeled GHRH antagonist JV-1–42, we demonstrated the presence of specific high-affinity (Kd = 0.25 ± 0.03 nM) binding sites for GHRH with a maximal binding capacity (Bmax) of 70.2 ± 4.1 fmol/mg of membrane protein in CAKI-1 tumors. These receptors bind GHRH antagonists preferentially and display a lower affinity for hGHRH. The binding of 125I-JV-1–42 is not inhibited by vasoactive intestinal peptide (VIP)-related peptides sharing structural homology with hGHRH. The receptors for GHRH antagonists on CAKI-1 tumors are distinct from binding sites detected with 125I-VIP (Kd = 0.89 ± 0.14 nM; Bmax = 183.5 ± 2.6 fmol/mg of protein) and also have different characteristics from GHRH receptors on rat pituitary as documented by the insignificant binding of [His1,125I-Tyr10,Nle27]hGHRH(1–32)NH2. Reverse transcription-PCR revealed the expression of splice variants of hGHRH receptor in CAKI-1 RCC. Biodistribution studies demonstrate an in vivo uptake of 125I-JV-1–42 by the RCC tumor tissue. The presence of specific receptor proteins that bind GHRH antagonists in CAKI-1 RCC supports the view that distinct binding sites that mediate the inhibitory effect of GHRH antagonists are present on various human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the catalytically inactive mutant (C215S) of the human protein-tyrosine phosphatase 1B (PTP1B) has been solved to high resolution in two complexes. In the first, crystals were grown in the presence of bis-(para-phosphophenyl) methane (BPPM), a synthetic high-affinity low-molecular weight nonpeptidic substrate (Km = 16 μM), and the structure was refined to an R-factor of 18.2% at 1.9 Å resolution. In the second, crystals were grown in a saturating concentration of phosphotyrosine (pTyr), and the structure was refined to an R-factor of 18.1% at 1.85 Å. Difference Fourier maps showed that BPPM binds PTP1B in two mutually exclusive modes, one in which it occupies the canonical pTyr-binding site (the active site), and another in which a phosphophenyl moiety interacts with a set of residues not previously observed to bind aryl phosphates. The identification of a second pTyr molecule at the same site in the PTP1B/C215S–pTyr complex confirms that these residues constitute a low-affinity noncatalytic aryl phosphate-binding site. Identification of a second aryl phosphate binding site adjacent to the active site provides a paradigm for the design of tight-binding, highly specific PTP1B inhibitors that can span both the active site and the adjacent noncatalytic site. This design can be achieved by tethering together two small ligands that are individually targeted to the active site and the proximal noncatalytic site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multizinc finger peptides are likely to reach increased prominence in the search for the “ideal” designer transcription factor for in vivo applications such as gene therapy. However, for these treatments to be effective and safe, the peptides must bind with high affinity and, more importantly, with great specificity. Our previous research has shown that zinc finger arrays can be made to bind 18 bp of DNA with picomolar affinity, but also has suggested that arrays of fingers also may bind tightly to related sequences. This work addresses the question of zinc finger DNA binding specificity. We show that by changing the way in which zinc finger arrays are constructed—by linking three two-finger domains rather than two three-finger units—far greater target specificity can be achieved through increased discrimination against mutated or closely related sequences. These new peptides have the added capability of being able to span two short gaps of unbound DNA, although still binding with picomolar affinity to their target sites. We believe that this new method of constructing zinc finger arrays will offer greater efficacy in the fields of gene therapy and in the production of transgenic organisms than previously reported zinc finger arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-affinity uptake into bacterial cells is mediated by a large class of periplasmic binding protein-dependent transport systems, members of the ATP-binding cassette superfamily. In the maltose transport system of Escherichia coli, the periplasmic maltose-binding protein binds its substrate maltose with high affinity and, in addition, stimulates the ATPase activity of the membrane-associated transporter when maltose is present. Vanadate inhibits maltose transport by trapping ADP in one of the two nucleotide-binding sites of the membrane transporter immediately after ATP hydrolysis, consistent with its ability to mimic the transition state of the γ-phosphate of ATP during hydrolysis. Here we report that the maltose-binding protein becomes tightly associated with the membrane transporter in the presence of vanadate and simultaneously loses its high affinity for maltose. These results suggest a general model explaining how ATP hydrolysis is coupled to substrate transport in which a binding protein stimulates the ATPase activity of its cognate transporter by stabilizing the transition state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-Å crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NagC and Mlc proteins are homologous transcriptional regulators that control the expression of several phosphotransferase system (PTS) genes in Escherichia coli. NagC represses nagE, encoding the N-acetylglucosamine-specific transporter, while Mlc represses three PTS operons, ptsG, manXYZ and ptsHIcrr, involved in the uptake of glucose. NagC and Mlc can bind to each others operator, at least in vitro. A binding site selection procedure was used to try to distinguish NagC and Mlc sites. The major difference was that all selected NagC binding sites had a G or a C at positions +11/–11 from the centre of symmetry. This is also the case for most native NagC sites, but not the nagE operator, which thus looks like a potential Mlc target. The nagE operator does exhibit a higher affinity for Mlc than NagC, but no regulation of nagE by physiological concentrations of Mlc was detected in vivo. Regulation of wild-type nagE by NagC is achieved because of the chelation effect due to a second high affinity NagC operator covering the nagB promoter. Replacing the A/T at +11/–11 with C/G allows repression by NagC in the absence of the nagB operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a spectrophotometric assay that measures the hyperchromicity that accompanies the unwinding of a DNA duplex, we have identified an ATP-independent step in the unwinding of a herpes simplex virus type 1 (HSV-1) origin of replication, Oris, by a complex of the HSV-1 origin binding protein (UL9 protein) and the HSV-1 single-strand DNA binding protein (ICP8). The sequence unwound is the 18-bp A + T-rich segment that links the two high-affinity UL9 protein binding sites, boxes I and II of Oris. P1 nuclease sensitivity of Oris and single-strand DNA-dependent ATPase measurements of the UL9 protein indicate that, at 37°C, the A + T-rich segment is sufficiently single stranded to permit the binding of ICP8. Binding of the UL9 protein to boxes I and II then results in the formation of the UL9 protein–ICP8 complex, that can, in the absence of ATP, promote unwinding of the A + T-rich segment. On addition of ATP, the helicase activity of the UL9 protein–ICP8 complex can unwind boxes I and II, permitting access of the replication machinery to the Oris sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-18 can be considered a proinflammatory cytokine mediating disease as well as an immunostimulatory cytokine that is important for host defense against infection and cancer. The high-affinity, constitutively expressed, and circulating IL-18 binding protein (IL-18BP), which competes with cell surface receptors for IL-18 and neutralizes IL-18 activity, may act as a natural antiinflammatory as well as immunosuppressive molecule. In the present studies, the IL-18 precursor caspase-1 cleavage site was changed to a factor Xa site, and, after expression in Escherichia coli, mature IL-18 was generated by factor Xa cleavage. Mature IL-18 generated by factor Xa cleavage was fully active. Single point mutations in the mature IL-18 peptide were made, and the biological activities of the wild-type (WT) IL-18 were compared with those of the mutants. Mutants E42A and K89A exhibited 2-fold increased activity compared with WT IL-18. A double mutant, E42A plus K89A, exhibited 4-fold greater activity. Unexpectedly, IL-18BP failed to neutralize the double mutant E42A plus K89A compared with WT IL-18. The K89A mutant was intermediate in being neutralized by IL-18BP, whereas neutralization of the E42A mutant was comparable to that in the WT IL-18. The identification of E42 and K89 in the mature IL-18 peptide is consistent with previous modeling studies of IL-18 binding to IL-18BP and explains the unusually high affinity of IL-18BP for IL-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose. Analysis of isothermal titration microcalorimetry data against two putative binding models indicates that the bacterial microcrystalline cellulose surface presents two independent classes of binding sites, with the predominant high-affinity site being characterized by a Langmuir-type Ka of 6.3 (+/-1.4) x 10(7) M-1 and the low-affinity site by a Ka of 1.1 (+/-0.6) x 10(6) M-1. CBDCex binding to either site is exothermic, but is mainly driven by a large positive change in entropy. This differs from protein binding to soluble carbohydrates, which is usually driven by a relatively large exothermic standard enthalpy change for binding. Differential heat capacity changes are large and negative, indicating that sorbent and protein dehydration effects make a dominant contribution to the driving force for binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttranscriptional regulation of genes of mammalian iron metabolism is mediated by the interaction of iron regulatory proteins (IRPs) with RNA stem-loop sequence elements known as iron-responsive elements (IREs). There are two identified IRPs, IRP1 and IRP2, each of which binds consensus IREs present in eukaryotic transcripts with equal affinity. Site-directed mutagenesis of IRP1 and IRP2 reveals that, although the binding affinities for consensus IREs are indistinguishable, the contributions of arginine residues in the active-site cleft to the binding affinity are different in the two RNA binding sites. Furthermore, although each IRP binds the consensus IRE with high affinity, each IRP also binds a unique alternative ligand, which was identified in an in vitro systematic evolution of ligands by exponential enrichment procedure. Differences in the two binding sites may be important in the function of the IRE-IRP regulatory system.