470 resultados para HEPATOCYTE COUPLETS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

HNF1B (Hepatocyte Nuclear Factor 1-B localizado en el cromosoma 17q21.3) es un factor de transcripción con un papel fundamental en los primeros estadios del desarrollo y en la organogénesis de diferentes tejidos como el renal, hepático, pancreático o genital. Las mutaciones de este gen se heredan con un patrón autosómico dominante. A nivel renal acostumbran a haber alteraciones morfológicas y grados variables de afectación tubular. A nivel extrarenal se ha relacionado con la diabetes tipo MODY, malformaciones genitales o alteraciones hepáticas. La gran variabilidad de formas de presentación hace que la sospecha clínica resulte en muchas ocasiones dificultosa. En el presente estudio, se realiza una descripción clínica y génètica de los pacientes identificados en nuestro centro con mutación en el gen HNF1b. Observamos, en consonancia con lo descrito en la literatura, una gran variabilidad interfamiliar y intrafamiliar, así como una ausencia de relación fenotipo-genotipo en cuanto la forma de presentación o evolución de la enfermedad. Se recomienda el estudio de HNF1b en pacientes pediátricos o adultos con patología estructural renal, especialmente si se asocia a diabetes tipo MODY, malformaciones genitales, hipomagnesemia, hiperuricemia o antecedentes familiares de nefropatía.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractBackground: Mucosal healing is becoming a major goal in the treatment of Crohn's disease. It has been previously reported that myeloid cells induce mucosal healing in a mouse model of acute colitis. The aim in this study is to investigate the pro-repair function of myeloid cells in healthy donors (HD) and Crohn's disease patients (CD).Methods: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples and tested either directly or after differentiation ex-vivo into macrophages (Μφ). Intestinal macrophages (IMACs) were isolated from the bowel mucosa of patients undergoing intestinal surgical resections. Through an in vitro wound healing assay the repairing ability of these various human myeloid cells and the mechanisms responsible of wound healing were evaluated.Results: PBMC and myeloid CD14+ cells from HD and CD were not able to repair at any tested cell concentration. Μφ from HD and ulcerative colitis (UC) patients were able to induce wound healing and this capacity was partially mediated by Hepatocyte Growth Factor (HGF). Remarkably, CD Μφ were unable to promote wound healing and produced lower levels of HGF as compared to Μφ from HD or UC patients. In particular, Μφ from CD in active phase (ACD) exhibited the weakest repair function, but this defect was rescued if rh- GM-CSF was added during the differentiation of PBMCs. Interestingly, IMACs from HD promoted wound healing and produced HGF.Conclusion: We demonstrated that CD Μφ, unlike HD or UC Μφ, were defective in promoting wound healing, in particular if coming from an ACD. This deficient pro-repair function was related to a lower production of HGF. IMACs from HD colonic mucosa induced wound healing, confirming the results obtained with Μφ. Our results are in keeping with the current theory of CD as an innate immunodeficiency. In this context, Μφ may be responsible for the mucosal repair defects observed in CD patients and for the subsequent chronic activation of the adaptive immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liver-specific vitellogenin B1 promoter is efficiently activated by estrogen within a nucleosomal environment after microinjection into Xenopus laevis oocytes, consistent with the hypothesis that significant nucleosome remodeling over this promoter is not a prerequisite for the activation by the estrogen receptor (ERalpha). This observation lead us to investigate determinants other than ERalpha of chromatin structure and transcriptional activation of the vitellogenin B1 promoter in this system and in vitro. We find that the liver-enriched transcription factor HNF3 has an important organizational role for chromatin structure as demonstrated by DNase I-hypersensitive site mapping. Both HNF3 and the estrogen receptor activate transcription synergistically and are able to interact with chromatin reconstituted in vitro with three positioned nucleosomes. We propose that HNF3 is the cellular determinant which establishes a promoter environment favorable to a rapid transcriptional activation by the estrogen receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using isolated, in situ, single-pass perfused rat livers, incubations of freshly isolated hepatocytes, and sinusoidal membrane-enriched vesicles, we and others have shown the saturability of transport (efflux) of hepatic glutathione (GSH). These observations have implicated a carrier mechanism. Our present studies were designed to provide further evidence in support of a carrier mechanism for hepatic GSH efflux by demonstrating competition by liver-specific ligands which are taken up by hepatocytes. Perfusing livers with different substances, we found that: (a) sulfobromophthalein-GSH (BSP-GSH) had a dose-dependent and fully reversible inhibitory effect on GSH efflux, while GSH alone did not have any effect; (b) taurocholate had no inhibitory effect; (c) all of the organic anions studied, i.e., BSP, rose bengal, indocyanine green, and unconjugated bilirubin (UCB), manifested potent, dose-dependent inhibitory effects, with absence of toxic effects and complete reversibility of inhibition in the case of UCB. The inhibitory effects of UCB could be overcome partially by raising (CoCl2-induced) hepatic GSH concentration. Because of the physiological importance of UCB, we conducted a detailed study of its inhibitory kinetics in the isolated hepatocyte model in the range of circulating concentrations of UCB. Studies with Cl- -free media, to inhibit the uptake of UCB by hepatocytes, showed that the inhibition of GSH efflux by UCB is apparently from inside the cell. This point was confirmed by showing that the inhibition is overcome only when bilirubin-loaded cells are cleared of bilirubin (incubation with 5% bovine serum albumin). Using Gunn rat hepatocytes and purified bilirubin mono- and diglucuronides, we found that both UCB and glucuronide forms of bilirubin inhibit GSH efflux in a dose-dependent manner. We conclude that the organic anions, although taken up by a mechanism independent of GSH, may competitively inhibit the carrier for GSH efflux from inside the hepatocyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARbeta/delta- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new important function for both factors in the growth of early hair follicles. We demonstrate that a time-regulated activation of the PPARbeta/delta protein in follicular keratinocytes involves the up-regulation of the cyclooxygenase 2 enzyme by a mesenchymal paracrine factor, the hepatocyte growth factor. Subsequent PPARbeta/delta-mediated temporal activation of the antiapoptotic Akt1 pathway in vivo protects keratinocytes from hair pegs against apoptosis, which is required for normal hair follicle development. Together, these results demonstrate that epithelium-mesenchyme interactions in the skin regulate the activity of PPARbeta/delta during hair follicle development via the control of ligand production and provide important new insights into the molecular biology of hair growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les tumeurs stromales gastro-intestinales (GISTs) sont des tumeurs de malignité variable du tractus gastro-intestinal d'évolution difficilement prévisible. Plus de 95% d'entre elles expriment les récepteurs KIT (90%) ou PDGFRA (5%), deux récepteurs aux facteurs de croissance à activité tyrosine-kinase. Peu de données existent quant à l'expression éventuelles d'autres récepteurs aux facteurs de croissance dans les GISTs. Buts de l'étude: Les buts de cette étude étaient double: 1-évaluer l'expression de plusieurs récepteurs aux facteurs de croissance, à l'exclusion de KIT et PDGFRA, au sein d'un collectif de GISTs; 2 -voir s'il existait une corrélation entre l'expression d'un ou plusieurs de ces récepteurs, les données anatomo-pathologiques et/ou l'évolution clinique Matériel et méthodes 80 GISTs ont été examinées sur le plan clinique, anatomo-pathologique, immunohistochimique et évolutif. L'immunoexpression des récepteurs aux facteurs de croissance suivants a été examinée: IGF-1r - insulin-like growth factor-1 receptor, FGFr fibroblast growth factor receptor, C-MET - hepatocyte growth factor receptor, TGFßr (type 1) - transforming growth factor beta receptor, type 1, CD105/endogline, RET et NGFr/gp75 (nerve growth factor receptor). Résultats 52.7% des GISTs exprimaient C-MET, 50% CD105iendogline, 36.7% RET, 25% NGFr/gp75, 17.5°Io TGFßr, 7.5% FGFr, et 0% IGF-lr. La présence ou non d'une expression de CD105 et son intensité étaient significativement associées à une évolution défavorable, tant pour les patients présentant une maladie localisée au diagnostic que pour ceux qui étaient métastatiques au diagnostic. L'expression de C-MET était aussi corrélée, mais de façon moins significative; à une évolution défavorable. En analyse multivariée, l'expression de CD105 est un facteur pronostique indépendant défavorable. Conclusion Les GISTs expriment de façon variable des récepteurs aux facteurs de croissance autres que KIT et PDGFRA. Les récepteurs au TGFß, au FGF et à l'IGF sont peu exprimés. L'endogline/CD105 et le récepteur C-MET sont plus fréquemment exprimés et leur expression est associée à une évolution clinique défavorable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 μmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 μmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.