958 resultados para HEAVY-NUCLEI
Resumo:
Kirjallisuusarvostelu
Resumo:
Adsorbents functionalized with chelating agents are effective in removal of heavy metals from aqueous solutions. Important properties of such adsorbents are high binding affinity as well as regenerability. In this study, aminopolycarboxylic acid, EDTA and DTPA, were immobilized on the surface of silica gel, chitosan, and their hybrid materials to achieve chelating adsorbents for heavy metals such as Co(II), Ni(II), Cd(II), and Pb(II). New knowledge about the adsorption properties of EDTA- and DTPA-functionalizedadsorbents was obtained. Experimental work showed the effectiveness, regenerability, and stability of the studied adsorbents. Both advantages and disadvantages of the adsorbents were evaluated. For example, the EDTA-functionalized chitosan-silica hybrid materials combined the benefits of the silica gel and chitosan while at the same time diminishing their observed drawbacks. Modeling of adsorption kinetics and isotherms is an important step in design process. Therefore, several kinetic and isotherm models were introduced and applied in this work. Important aspects such as effect of error function, data range, initial guess values, and linearization were discussed and investigated. The selection of the most suitable model was conducted by comparing the experimental and simulated data as well as evaluating the correspondence between the theory behind the model and properties of the adsorbent. In addition, modeling of two-component data was conducted using various extended isotherms. Modeling results for both one- and twocomponent systems supported each other. Finally, application testing of EDTA- and DTPA-functionalized adsorbents was conducted. The most important result was the applicability of DTPA-functionalized silica gel and chitosan in the capturing of Co(II) from its aqueous EDTA-chelate. Moreover, these adsorbents were efficient in various solution matrices. In addition, separation of Ni(II) from Co(II) and Ni(II) and Pb(II) from Co(II) and Cd(II) was observed in two- and multimetal systems. Lastly, prior to their analysis, EDTA- and DTPA-functionalized silica gels were successfully used to preconcentrate metal ions from both pure and salty waters
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
kuv., 12 x 14 cm
Resumo:
kuv., 10 x 23 cm
Resumo:
Abstract: The concentration of heavy metals (Cr, Fe, Al, As, Cd, Cu, Pb, Mo, Ni, Se and Zn) was evaluated in the blood of nestling blue macaws (Anodorhynchus hyacinthinus) captured in the Pantanal, Mato Grosso do Sul (n=26) in 2012; this was based on the hypothesis that these birds exhibit levels of these heavy metals in their organism and that these interfere in hatching success, weight and age of the chicks. Blood samples were digested with nitric acid and hydrochloric acid and the quantification of metals was performed by ICP-OES (Optical Emission Spectroscopy and Inductively Coupled Plasma). Blood samples of nestlings showed concentrations of Cr (0.10μg/g) Fe (3.06μg/g) Al (3.46μg/g), Cd (0.25μg/g) Cu (0.74μg/g), Mo (0.33μg/g), Ni (0.61μg/g), Se (0.98μg/g), and Zn (2.08μg/g). The levels of heavy metals found were not associated with weight, age and hatching success of the chicks.
Resumo:
There is a dense serotonergic projection from nucleus raphe pallidus and nucleus raphe obscurus to the trigeminal motor nucleus and serotonin exerts a strong facilitatory action on the trigeminal motoneurons. Some serotonergic neurons in these caudal raphe nuclei increase their discharge during feeding. The objective of the present study was to investigate the possibility that the activity of these serotonergic neurons is related to activity of masticatory muscles. Cats were implanted with microelectrodes and gross electrodes. Caudal raphe single neuron activity, electrocorticographic activity, and splenius, digastric and masseter electromyographic activities were recorded during active behaviors (feeding and grooming), during quiet waking and during sleep. Seven presumed serotonergic neurons were identified. These neurons showed a long duration action potential (>2.0 ms), and discharged slowly (2-7 Hz) and very regularly (interspike interval coefficient of variation <0.3) during quiet waking. The activity of these neurons decreased remarkably during fast wave sleep (78-100%). Six of these neurons showed tonic changes in their activity positively related to digastric and/or masseter muscle activity but not to splenius muscle activity during waking. These data are consistent with the hypothesis that serotonergic neurons in the caudal raphe nuclei play an important role in the control of jaw movements
Resumo:
The antinociceptive effects of stimulating the medial (ME) and central (CE) nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.
Resumo:
Involvement of the caudal raphe nuclei (raphe pallidus, RPa; raphe magnus, RMg, and raphe obscurus, ROb) in feeding behavior of adult rats was studied by measuring c-Fos protein expression, in animals submitted to the "meal-feeding" model of food restriction in which the rats were fed ad libitum only from 7:00 to 9:00 h, for 15 days. The experimental groups submitted to chronic fasting, named 'search for food' (SF), 'ingestion of food' (IF) and 'satiety of food' (SaF) were scheduled after a previous study in which the body weight and the general and feeding behaviors were evaluated by daily monitoring. Acute, 48-h fasting (AF) was used as control. In the chronic group, the animals presented a 16% reduction in body weight in the first week, followed by a continuous, slow rise in weight over the subsequent days. Entrainment of the sleep-wake cycle to the schedule of food presentation was also observed. The RPa was the most Fos immunopositive nucleus in the chronic fasting group, followed by the RMg. The ANOVA and Tukey test (P<0.05) confirmed these results. The IF group was significantly different from the other three groups, as also was the number of labeled cells in the RPa in SF and IF groups. Nevertheless, no significant difference was observed between RMg and RPa, or RMg and ROb in the SaF and AF. However, it is interesting to observe that the groups in which the animals were more active, searching for or ingesting food, presented a larger number of labeled cells. These results suggest a different involvement of the caudal raphe nuclei in the somatic and autonomic events of feeding behavior, corroborating the functions reported for them earlier.
Resumo:
We investigated the behavioral correlates of the activity of serotonergic and non-serotonergic neurons in the nucleus raphe pallidus (NRP) and nucleus raphe obscurus (NRO) of unanesthetized and unrestrained cats. The animals were implanted with electrodes for recording single unit activity, parietal oscillographic activity, and splenius, digastric and masseter electromyographic activities. They were tested along the waking-sleep cycle, during sensory stimulation and during drinking behavior. The discharge of the serotonergic neurons decreased progressively from quiet waking to slow wave sleep and to fast wave sleep. Ten different patterns of relative discharge across the three states were observed for the non-serotonergic neurons. Several non-serotonergic neurons showed cyclic discharge fluctuations related to respiration during one, two or all three states. While serotonergic neurons were usually unresponsive to the sensory stimuli used, many non-serotonergic neurons responded to these stimuli. Several non-serotonergic neurons showed a phasic relationship with splenius muscle activity during auditory stimulation. One serotonergic neuron showed a tonic relationship with digastric muscle activity during drinking behavior. A few non-serotonergic neurons exhibited a tonic relationship with digastric and/or masseter muscle activity during this behavior. Many non-serotonergic neurons exhibited a phasic relationship with these muscle activities, also during this behavior. These results suggest that the serotonergic neurons in the NRP and NRO constitute a relatively homogeneous population from a functional point of view, while the non-serotonergic neurons form groups with considerable functional specificity. The data support the idea that the NRP and NRO are implicated in the control of somatic motor output.
Resumo:
Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown etiology, affects motor neurons leading to atrophy of skeletal muscles, paralysis and death. There is evidence for the accumulation of neurofilaments (NF) in motor neurons of the spinal cord in ALS cases. NF are major structural elements of the neuronal cytoskeleton. They play an important role in cell architecture and differentiation and in the determination and maintenance of fiber caliber. They are composed of three different polypeptides: light (NF-L), medium (NF-M) and heavy (NF-H) subunits. In the present study, we performed a morphological and quantitative immunohistochemical analysis to evaluate the accumulation of NF and the presence of each subunit in control and ALS cases. Spinal cords from patients without neurological disease and from ALS patients were obtained at autopsy. In all ALS cases there was a marked loss of motor neurons, besides atrophic neurons and preserved neurons with cytoplasmic inclusions, and extensive gliosis. In control cases, the immunoreaction in the cytoplasm of neurons was weak for phosphorylated NF-H, strong for NF-M and weak for NF-L. In ALS cases, anterior horn neurons showed intense immunoreactivity in focal regions of neuronal perikarya for all subunits, although the difference in the integrated optical density was statistically significant only for NF-H. Furthermore, we also observed dilated axons (spheroids), which were immunopositive for NF-H but negative for NF-M and NF-L. In conclusion, we present qualitative and quantitative evidence of NF-H subunit accumulation in neuronal perikarya and spheroids, which suggests a possible role of this subunit in the pathogenesis of ALS.
Resumo:
The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.