995 resultados para Greenhouse plants.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetone powders prepared from leaf extracts of Tecoma stans L. were found to catalyze the oxidation of catechol to 3,4,3',4'-tetrahydroxydiphenyl. Fractionation of the acetone powders obtained from Tecoma leaves with acetone, negative adsorption of the acetone fraction with tricalcium phosphate gel, and chromatography of the gel supernatant on DEAE-Sephadex yielded a 68-fold purified enzyme with 66% recovery. The enzyme had an optimum pH around 7.2. It showed a temperature optimum of 30° and the Km for catechol was determined as 2 x 10-4 m. The purified enzyme moved as a single band on polyacrylamide gel electrophoresis. Its activity was found to be partially stimulated by Mg2+. The reaction was not inhibited by o-phenanthroline and agr,agr'-dipyridyl. The purified enzyme was highly insensitive to a range of copper-chelating agents. It was not affected appreciably by thiol inhibitors. The reaction was found to be suppressed to a considerable extent by reducing agents like GSH, cysteine, cysteamine, and ascorbic acid. The purified enzyme was remarkably specific for catechol. Catalase affected neither the enzyme activity nor the time course of the reaction. Hydrogen peroxide was not formed as a product of the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted over 5 years to understand the seasonal phenology of bare-rooted ?Festival? strawberry plants (Fragaria ?ananassa) growing at Nambour in southeastern Queensland, Australia. Yields ranged from 661 to 966 g/plant, and average seasonal fruit fresh weight ranged from 15 to 18 g. The growth of the leaves, crowns, roots, flowers and fruit over time followed a linear or sigmoid pattern. Maximum values of leaf, crown and root dry weight towards the end of the growing season about 190 days after planting were 30, 15 and 7 g/plant, respectively. The rates of leaf and crown growth were lower than those achieved in California under a Mediterranean climate. There were strong relationships between the allocation of dry matter to the leaves, crowns and roots and plant dry weight. Allocation to the leaves, and especially to the crowns and roots, declined as the plants grew. The number of fruit/plant increased initially over time with a decline later in the season. Average fruit fresh weight was generally higher early in the season and then declined as fruit production increased. There were strong relationships between the growth of the whole plant and the growth of the flowers and immature fruit, and leaf expansion, across the growing season and across the 5 different years. These results indicate that seasonal growth and potential productivity were strongly linked to the expansion of the leaves in this environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campylobacter is an important food borne pathogen, mainly associated with poultry. A lack of through-chain quantitative Campylobacter data has been highlighted within quantitative risk assessments. The aim of this study was to quantitatively and qualitatively measure Campylobacter and Escherichia coli concentration on chicken carcasses through poultry slaughter. Chickens (n = 240) were sampled from each of four flocks along the processing chain, before scald, after scald, before chill, after chill, after packaging and from individual caeca. The overall prevalence of Campylobacter after packaging was 83% with a median concentration of 0.8 log10 CFU/mL. The processing points of scalding and chilling had significant mean reductions of both Campylobacter (1.8 and 2.9 log10 CFU/carcase) and E. coli (1.3 and 2.5 log10 CFU/carcase). The concentration of E. coli and Campylobacter was significantly correlated throughout processing indicating that E. coli may be a useful indicator organism for reductions in Campylobacter concentration. The carriage of species varied between flocks, with two flocks dominated by Campylobacter coli and two flocks dominated by Campylobacter jejuni. Current processing practices can lead to significant reductions in the concentration of Campylobacter on carcasses. Further understanding of the variable effect of processing on Campylobacter and the survival of specific genotypes may enable more targeted interventions to reduce the concentration of this poultry associated pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the yeast, mobilization of triacylglycerols (TAG) is facilitated by TGL3, TGL4 and TGL5 gene products. Interestingly, experiments using [32P] orthophosphate as a precursor for complex glycerophospholipids revealed that tgl mutants had a lower steady-state level of these membrane lipids. To understand a possible link between TAG lipolysis and phospholipid metabolism, we performed overexpression studies with Tgl3p and Tgl5p which clearly demonstrated that these two enzymes enhanced the level of phospholipids. Domains and motifs search analyses indicated that yeast TAG hydrolases posses a GXSXG lipase motif but also a HX4D acyltransferase motif. Purified Tgl3p and Tgl5p did not only exhibit TAG lipase activity but also catalyzed acyl-CoA dependent acylation of lyso-phosphatidylethanolamine and lyso-phosphatidic acid (LPA), respectively. Search for lipase/hydrolase homologues in the Arabidopsis thaliana genome led to the identification of At4g24160 which possess three motifs that are conserved across the plant species such as GXSXG motif, a HX4D motif and a probable lipid binding motif V(X)3HGF. Characterization of At4g24160 expressed in bacteria revealed that the presence of an acyl-CoA dependent LPA acyltransferase activity. In addition, the purified recombinant At4g24160 protein hydrolyzed both TAG and phosphatidylcholine. We hypothesize that the plant enzyme may be involved in membrane repair. In summary, our results indicate that these TAG lipases play a dual role and thereby contribute to both anabolic and catabolic processes in yeast and plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 m ) and V (3.2) of the native enzyme increased on renaturation to 1.8 m and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For accurate calculation of reductions in greenhouse-gas (GHG) emissions, methodologies under the Australian Government's Carbon Farming Initiative (CFI) depend on a valid assessment of the baseline and project emissions. Life-cycle assessments (LCAs) clearly show that enteric methane emitted from the rumen of cattle and sheep is the major source of GHG emissions from livestock enterprises. Where a historic baseline for a CFI methodology for livestock is required, the use of simulated data for cow-calf enterprises at six sites in southern Australia demonstrated that a 5-year rolling emission average will provide an acceptable trade off in terms of accuracy and stability, but this is a much shorter time period than typically used for LCA. For many CFI livestock methodologies, comparative or pair-wise baselines are potentially more appropriate than historic baselines. A case study of lipid supplementation of beef cows over winter is presented. The case study of a control herd of 250 cows used a comparative baseline derived from simple data on livestock numbers and class of livestock to quantify the emission abatement. Compared with the control herd, lipid supplementation to cows over winter increased livestock productivity, total livestock production and enterprise GHG emissions from 990 t CO2-e to 1022 t CO2-e. Energy embodied in the supplement and extra diesel used in transporting the supplement diminished the enteric-methane abatement benefit of lipid supplementation. Reducing the cow herd to 238 cows maintained the level of livestock production of the control herd and reduced enterprise emissions to 938 t CO2-e, but was not cost effective under the assumptions of this case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This greenhouse study investigated the efficacy of acibenzolar-S-methyl (Bion®) treatment of lower leaves of passionfruit, (Passiflora edulis f. sp. flavicarpa), on Passionfruit woodiness disease and activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase after inoculation with passionfruit woodiness virus (PWV). All Bion® concentrations reduced disease symptoms, but the concentration of 0.025 g active ingredient (a.i.)/l was the most effective, reducing disease severity in systemic leaves by 23, 29 and 30 compared with water-treated controls at 30, 40 and 50 days post inoculation (dpi) with PWV, respectively. Correspondingly, relative virus concentration as determined by DAS-ELISA in the upper, untreated leaves (new growth) above the site of inoculation at 50 dpi was reduced by 17 and 22 in plants treated with 0.025 and 0.05 g a.i./l, respectively. Bion® treatment and subsequent inoculation with PWV increased chitinase and β-1,3-glucanase activities in the new leaves above the site of inoculation at 30 dpi with PWV. It was concluded that optimal protective Bion® treatment concentrations were 0.025 and 0.05 g a.i./l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures’ ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P < 0.05). Nitrous oxide emission potential was significantly positively (P < 0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P < 0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NITROUS OXIDE (N2O) IS a potent greenhouse gas and the predominant ozone-depleting substance in the atmosphere. Agricultural nitrogenous fertiliser use is the major source of human-induced N2O emissions. A field experiment was conducted at Bundaberg from October 2012 to September 2014 to examine the impacts of legume crop (soybean) rotation as an alternative nitrogen (N) source on N2O emissions during the fallow period and to investigate low-emission soybean residue management practices. An automatic monitoring system and manual gas sampling chambers were used to measure greenhouse gas emissions from soil. Soybean cropping during the fallow period reduced N2O emissions compared to the bare fallow. Based on the N content in the soybean crop residues, the fertiliser N application rate was reduced by about 120 kg N/ha for the subsequent sugarcane crop. Consequently, emissions of N2O during the sugarcane cropping season were significantly lower from the soybean cropped soil than those from the conventionally fertilised (145 kg N/ha) soil following bare fallow. However, tillage that incorporated the soybean crop residues into soil promoted N2O emissions in the first two months. Spraying a nitrification inhibitor (DMPP) onto the soybean crop residues before tillage effectively prevented the N2O emission spikes. Compared to conventional tillage, practising no-till with or without growing a nitrogen catch crop during the time after soybean harvest and before cane planting also reduced N2O emissions substantially. These results demonstrated that soybean rotation during the fallow period followed with N conservation management practices could offer a promising N2O mitigation strategy in sugarcane farming. Further investigation is required to provide guidance on N and water management following soybean fallow to maintain sugar productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide is the foremost greenhouse gas (GHG)generated by land-applied manures and chemical fertilisers (Australian Government 2013). This research project was part of the National Agricultural Manure Management Program and investigated the potential for sorbers (i.e. specific naturally-occurring minerals) to decrease GHG emissions from spent piggery litter (as well as other manures)applied to soils. The sorbers investigated in this research were vermiculite and bentonite. Both are clays with high cation exchange capacities, of approximately 100–150 cmol/kg Faure 1998). The hypothesis tested in this study was that the sorbers bind ammonium in soil solution thereby suppressing ammonia (NH3)volatilisation and in doing so, slowing the kinetics of nitrate formation and associated nitrous oxide (N2O) emissions. A series of laboratory, glasshouse and field experiments were conducted to assess the sorbers’ effectiveness. The laboratory experiments comprised 64 vessels containing manure and sorber/manure ratios ranging from 1 : 10 to 1 : 1 incorporated into a sandy Sodosol via mixing. The glasshouse trial involved 240 pots comprising manure/sorber incubations placed 5 cm below the soil surface, two soil types (sandy Sodosol and Ferrosol) and two different nitrogen (N) application rates (50 kg N/ha and 150 kg N/ha) with a model plant (kikuyu grass). The field trial consisted of 96, 2 m · 2 m plots on a Ferrosol site with digit grass used as a model plant. Manure/ sorber mixtures were applied in trenches (5 cm below surface) to these plots at increasing sorber levels at anNloading rate of 200 kg/ha. Gas produced in all experiments was plumbed into a purpose-built automated gas analysis (N2O, NH3, CH4, CO2) system. In the laboratory experiments, the sorbers showed strong capacity to decreaseNH3 emissions (up to 80% decrease). Ammonia emissions were close to the detection limit in all treatments in the glasshouse and field trial. In all experiments, considerable N2O decreases (>40%) were achieved by the sorbers. As an example, mean N2O emission decreases from the field trial phase of the project are shown in Fig. 1a. The decrease inGHGemissions brought about by the clays did not negatively impact agronomic performance. Both vermiculite and bentonite resulted in a significant increase in dry matter yields in the field trial (Fig. 1b). Continuing work will optimise the sorber technology for improved environmental and agronomic performance across a range of soils (Vertosol, Dermosol in addition to Ferrosol and Sodosols) and environmental parameters (moisture, temperature, porosity, pH).