992 resultados para Granular materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nano-length scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 – 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"The success of Criminal Laws lies both in its distinctive features and in its appeal to a range of readerships. As one review put it, it is simultaneously a "textbook, casebook, handbook and reference work". As such it is ideal for criminal law and criminal justice courses as a teaching text, combining as it does primary sources with extensive critical commentary and a contextual perspective. It is likewise indispensable to practitioners for its detailed coverage of substantive law and its extensive references and inter-disciplinary approach make it a first point of call for researchers from all disciplines. This fifth edition strengthens these distinctive features. All chapters have been systematically updated to incorporate the plethora of legislative, case law, statistical and research material which has emerged since the previous edition. The critical, thematic, contextual and interdisciplinary perspectives have been continued."--Publisher's website. Table of Contents: 1. Some themes -- 2. Criminalisation -- 3. The criminal process -- 4. Components of criminal offences -- 5. Homicide: murder and involuntary manslaughter -- 6. Defences -- 7. Assault and sexual assault -- 8. Public order offences -- 9. Drugs offences -- 10. Dishonest acquisition -- 11. Extending criminal liability: complicity, conspiracy and association -- 12. Sentencing and penality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainability benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of the standard road materials used in Queensland, Australia. It was found that material type ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are in the margin of the minimum required specifications of base materials used for high volume unbound granular roads while others are lower than that the minimum requirement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the teaching and learning of fractions to Indigenous adult learners in a Civil Construction Certificate Course. More specifically it explores why the use of materials is critical to building knowledge and understanding. This focus is important for two reasons. First, it allows for considerations of a trainer’s approach for teaching fractions and, second it provides insights into how adult learners can be supported with representing their practical experiences of fractions to make generalisation thus building on their knowledge and learning experiences. The paper draws on teaching episodes from an Australian Research Council funded Linkage project that investigates how mathematics is taught and learned in Certificate Courses, here, Certificate 11 in Civil Construction. Action research and decolonising methods (Smith, 1999) were used to conduct the research. Video excerpts which feature one trainer and three students are analysed and described. Findings from the data indicate that adult learners need to be supported with materials to assist with building their capacity to know and apply understandings of fractions in a range of contexts, besides construction. Without materials and where fractions are taught via pen and paper tasks, students are less likely to retain and apply fraction ideas to their Certificate Course. Further they are less likely to understand decimals because of limited understanding of fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years materials such as quarried sand, anthracite, and granular activated carbon have been the principal media-products traditionally used in water and wastewater filtration plants. Pebble Matrix Filtration (PMF) is a novel non-chemical, sustainable pre-treatment method of protecting Slow Sand Filters (SSF) from high turbidity during heavy monsoon periods. PMF uses sand and pebbles as the filter media and the sustainability of this new technology might depend on availability and supply of pebbles and sand, both finite resources. In many countries there are two principal methods of obtaining pebbles and sand, namely dredging from rivers and beaches, and due to the scarcity of these resources in some countries the cost of pebbles is often 4-5 times higher than that of sand. In search for an alternative medium to pebbles after some preliminary laboratory tests conducted in Colombo-Sri Lanka, Poznan-Poland and Cambridge-UK, a 100-year-old brick factory near Sudbury, Suffolk, has produced hand-made clay pebbles satisfying the PMF quality requirements. As an alternative to sand, crushed recycled glass from a UK supplier was used and the PMF system was operated together with hand-made clay balls in the laboratory for high turbidity removal effectively. The results of laboratory experiments with alternative media are presented in this paper. There are potential opportunities for recycled crushed glass and clay ball manufacturing processes in some countries where they can be used as filter media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.