918 resultados para Grain-boundary Segregation
Resumo:
We report large scale molecular dynamics simulations of dynamic cyclic uniaxial tensile deformation of pure, fully dense nanocrystalline Ni, to reveal the crack initiation, and consequently intergranular fracture is the result of coalescence of nanovoids by breaking atomic bonds at grain boundaries and triple junctions. The results indicate that the brittle fracture behavior accounts for the transition from plastic deformation governed by dislocation to one that is grain-boundary dominant when the grain size reduces to the nanoscale. The grain-boundary mediated plasticity is also manifested by the new grain formation and growth induced by stress-assisted grain-boundary diffusion observed in this work. This work illustrates that grain-boundary decohesion is one of the fundamental deformation mechanisms in nanocrystalline Ni.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
晶界结构在高温下的热稳定性问题是一个长期争论而又未能解决的问题,其争论的焦点是:在远低于熔点的温度下,晶界结构是否发生了可观察到的无序化,即是否存在一个远低于熔点的结构转化温度。为了能澄清这一争论,本文系统地研究了晶界结构的热稳定性。为了消除相互作用势的影响和系统误差,本文首先采用Morse势和经验多体势分别对铝、铜单晶的熔化过程进行了分子动力学模拟。在平衡态下,通过计算表征结构无序化的静态结构因子、径向分布函数和单晶原子位形图,获得了铝、铜单晶的熔点,结果表明:多体势计算的铝和铜的单晶熔点更接近实验值。因此,采用经验多体势应用分子动力学方法分别模拟了铝、铜Σ3、Σ5、Σ9、Σ11、Σ19、Σ33六种对称倾侧双晶晶界晶界结构由有序向无序转化的过程,计算了平衡态下的表征结构无序化的静态结构因子、径向分布函数和晶界原子位形图并将多体势获得的铝、铜单晶熔点作为晶界结构转化温度的约化熔点,获得了铝、铜Σ3、Σ5、Σ9、Σ11、Σ19、Σ33六种对称倾侧双晶晶界结构的转化温度和熔点,结果表明:1.Σ5、Σ9、Σ11、Σ19、Σ33五种对称倾侧双晶晶界均在远低于单晶熔点温度时,晶界结构发生了可观察到的无序化,而且双晶晶界结构的转变温度相差不大,双晶晶界熔点也低于单晶熔点。2.Σ3晶界在温度远低于熔点时,其晶界结构没有发生可观察到的无序化;Σ3晶界的转化温度与单晶熔点接近。所以,可以认为Σ3晶界不存在转化温度。这是由于Σ3晶界为共格孪晶,具有较低的能量。综上所述,除Σ3共格孪晶外,在远低于熔点温度下,晶界结构发生了可观察到的无序化,即:存在一个远低于熔点的转化温度,此时其静态结构因子约为0.5左右;晶界结构的熔点均低于单晶熔点,此时其静态结构因子约为0.15左右。从全文模拟结果可以看出,静态结构因子、径向分布函数、晶界原子位形图三种方法在确定晶界的结构转化温度和熔点时,静态结构因子是最有效、最准确的定量方法。
Resumo:
A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60A degrees full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.
Resumo:
Deformation twinning has been observed in room-temperature rolled nanocrystalline Ni. The growth of the deformation twins via the emission of partial dislocations from a grain boundary has been examined in detail. Partial dislocations on neighboring slip planes may migrate for different distances and then remain in the grain interior, leading to the formation of a steplike twin boundary TB . With continued twin growth, the TBs become gradually distorted and lose their coherent character due to accumulated high stresses. Moreover, we propose that microtwins may form near such TBs due to the emission of partial dislocations from the TB.
Resumo:
The main factors affecting solid-phase Si-metal interactions are reported in this work. The influence of the orientation of the Si substrates and the presence of impurities in metal films and at the Si-metal interface on the formation of nickel and chromium silicides have been demonstrated. We have observed that the formation and kinetic rate of growth of nickel silicides is strongly dependent on the orientation and crystallinity of the Si substrates; a fact which, up to date, has never been seriously investigated in silicide formation. Impurity contaminations in the Cr film and at the Si-Cr interface are the most dominant influencing factors in the formation and kinetic rate of growth of CrSi2. The potentiality and use of silicides as a diffusion barrier in metallization on silicon devices were also investigated.
Two phases, Ni2Si and NiSi, form simultaneously in two distinct sublayers in the reaction of Ni with amorphous Si, while only the former phase was observed on other substrates. On (111) oriented Si substrates the growth rate is about 2 to 3 times less than that on <100> or polycrystalline Si. Transmission electron micrographs establish-·that silicide layers grown on different substrates have different microcrystalline structures. The concept of grain-boundary diffusion is speculated to be an important factor in silicide formation.
The composition and kinetic rate of CrSi2 formation are not influenced by the underlying Si substrate. While the orientation of the Si substrate does not affect the formation of CrSi2 , the purity of the Cr film and the state of Si-Cr interface become the predominant factors in the reaction process. With an interposed layer of Pd2Si between the Cr film and the Si substrate, CrSi2 starts to form at a much lower temperature (400°C) relative to the Si-Cr system. However, the growth rate of CrSi2 is observed to be independent of the thickness of the Pd2Si layer. For both Si-Cr and Si-Pd2Si-Cr samples, the growth rate is linear with time with an activation energy of 1.7 ± 0.1 ev.
A tracer technique using radioactive 31Si (T1/2 = 2.26 h) was used to study the formation of CrSi2 on Pd2Si. It is established from this experiment that the growth of CrSi2 takes place partly by transport of Si directly from the Si substrate and partly by breaking Pd2Si bonds, making free Si atoms available for the growth process.
The role of CrSi2 in Pd-Al metallization on Si was studied. It is established that a thin CrSi2 layer can be used as a diffusion barrier to prevent Al from interacting with Pd2Si in the Pd-Al metallization on Si.
As a generalization of what has been observed for polycrystalline-Si-Al interaction, the reactions between polycrystalline Si (poly Si) and other metals were studied. The metals investigated include Ni, Cr, Pd, Ag and Au. For Ni, Cr and Pd, annealing results in silicide formation, at temperatures similar to those observed on single crystal Si substrates. For Al, Ag and Au, which form simple eutectics with Si annealing results in erosion of the poly Si layer and growth of Si crystallites in the metal films.
Backscattering spectrometry with 2.0 and 2.3 MeV 4He ions was the main analytical tool used in all our investigations. Other experimental techniques include the Read camera glancing angle x-ray diffraction, scanning electron, optical and transmission electron microscopy. Details of these analytical techniques are given in Chapter II.
Resumo:
Advances in nano-scale mechanical testing have brought about progress in the understanding of physical phenomena in materials and a measure of control in the fabrication of novel materials. In contrast to bulk materials that display size-invariant mechanical properties, sub-micron metallic samples show a critical dependence on sample size. The strength of nano-scale single crystalline metals is well-described by a power-law function, σαD-n, where D is a critical sample size and n is a experimentally-fit positive exponent. This relationship is attributed to source-driven plasticity and demonstrates a strengthening as the decreasing sample size begins to limit the size and number of dislocation sources. A full understanding of this size-dependence is complicated by the presence of microstructural features such as interfaces that can compete with the dominant dislocation-based deformation mechanisms. In this thesis, the effects of microstructural features such as grain boundaries and anisotropic crystallinity on nano-scale metals are investigated through uniaxial compression testing. We find that nano-sized Cu covered by a hard coating displays a Bauschinger effect and the emergence of this behavior can be explained through a simple dislocation-based analytic model. Al nano-pillars containing a single vertically-oriented coincident site lattice grain boundary are found to show similar deformation to single-crystalline nano-pillars with slip traces passing through the grain boundary. With increasing tilt angle of the grain boundary from the pillar axis, we observe a transition from dislocation-dominated deformation to grain boundary sliding. Crystallites are observed to shear along the grain boundary and molecular dynamics simulations reveal a mechanism of atomic migration that accommodates boundary sliding. We conclude with an analysis of the effects of inherent crystal anisotropy and alloying on the mechanical behavior of the Mg alloy, AZ31. Through comparison to pure Mg, we show that the size effect dominates the strength of samples below 10 μm, that differences in the size effect between hexagonal slip systems is due to the inherent crystal anisotropy, suggesting that the fundamental mechanism of the size effect in these slip systems is the same.
Resumo:
由溶胶一凝胶/燃烧合成结合法合成了Nd:YAG(掺钕钇铝石榴石,neodymium—doped yttrium aluminium garnet)粉体,用真空烧结法制备了Nd:YAG透明陶瓷。研究了显微结构随烧结温度和保温时间的变化,并对透明陶瓷的晶界结构和成分分布进行了表征。随着烧结温度的提高和保温时间的延长,Nd:YAG陶瓷的密度增大,晶形发育完整,透过率提高。晶粒内部和晶界的化学组成基本相同。所制备的Nd:YAG透明陶瓷在激光工作波长1064nm的透过率达到75%。
Resumo:
采用提拉法生长了质量优异的Yb:Ca5(PO4)2F(Yb:FAP)晶体。运用化学腐蚀,光学显微镜、扫描电子显微镜以及能量散射光谱仪观察了该晶体中的生长条纹和包裹物等宏观缺陷,以及晶体的位错腐蚀形貌、位错密度及其分布情况,同时观察了晶体中亚晶界的形态。由晶体中位错的径向变化以及生长条纹可知:晶体在生长过程中为微凸界面生长。高温下CaF2的挥发造成了在晶体生长后期熔体中组分偏离化学计量比,出现组分过冷,形成包裹物。且位错密度显著增加。Yb:FAP晶体的各向异性使得晶体在(10 10)面的位错蚀坑形状、大小以
Resumo:
采用提拉法生长出φ30 mm×55 mm的ScAlMgO4晶体。在晶体生长过程中有轻微的挥发,粉末X射线衍射分析表明:挥发物质为MgO单相。运用扫描电镜、光学显微镜以及高分辨X射线衍射仪对晶体中的包裹物、开裂、生长条纹和小角晶界缺陷进行了研究。结果表明:温度梯度和热应力是形成晶体中缺陷的主要原因。通过合理设计温场,控制固-液界面的形状及冷却过程的降温速率,可以提高晶体的完整性。
Resumo:
采用提拉法生长了掺Ce、掺Yb和掺Mn的铝酸钇(YAlO3,YAP)晶体,晶体均完整透明,无肉眼可见的气泡、散射和包裹物等宏观缺陷。通过化学腐蚀和同步辐射白光形貌实验检测了YAP晶体中的生长小面缺陷。结果表明:晶体生长过程中,由于凸向熔体的固-液界面,造成了小面生长现象。沿[101]方向生长的YAP晶体中出现的小面为(102),(201),(121)和(121)奇异面。X射线摇摆曲线表征的结果表明:生长小面的存在严重破坏了晶体的微观结构完整性和均匀性,并导致了小角度晶界缺陷的产生。
Resumo:
With recent developments in carbon-based electronics, it is imperative to understand the interplay between the morphology and electronic structure in graphene and graphite. We demonstrate controlled and repeatable vertical displacement of the top graphene layer from the substrate mediated by the scanning tunneling microscopy (STM) tip-sample interaction, manifested at the atomic level as well as over superlattices spanning several tens of nanometers. Besides the full-displacement, we observed the first half-displacement of the surface graphene layer, confirming that a reduced coupling rather than a change in lateral layer stacking is responsible for the triangular/honeycomb atomic lattice transition phenomenon, clearing the controversy surrounding it. Furthermore, an atomic scale mechanical stress at a grain boundary in graphite, resulting in the localization of states near the Fermi energy, is revealed through voltage-dependent imaging. A method of producing graphene nanoribbons based on the manipulation capabilities of the STM is also implemented.
Resumo:
(1R,4R)-2-(4-Hydroxybenzylidene)- and (1R,4R)-2-(4′-hydroxybiphenyl- 4-yl)methylene-p-menthan-3-ones were synthesized by condensation of (-)-menthone with O-tetrahydropyran-2-yl derivatives of 4-hydroxybenzaldehyde and 4′-hydroxy-4-formylbiphenyl, respectively, in a DMSO - base medium followed by the removal of the protective group. The reactions of these hydroxy derivatives with 4-alkylbenzoic, 4-alkyloxybenzoic, trans-4-alkylcyclohexane-4- carboxylic, and 4′-alkylbiphenyl-4-carboxylic acids afforded three series of new chiral esters. Compounds containing the arylidene moiety with three benzene rings were found to exhibit liquid-crystalline properties. The characteristic features of these compounds are discussed based on the results of studies by polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. It was found that the mesomorphic compounds under study can form a smectic A mesophase, twist grain boundary mesophases (TGBA), and blue phases in a wide temperature range. Upon dissolution of certain of chiral compounds in 4′-cyano-4-pentylbiphenyl, a rather high twisting power and the thermal stabilizing effect on mesophases were observed.
Resumo:
YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.
Resumo:
Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.